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A THOUGHT OF OPTIMIZATION AND DESIGN OF GEODETIC NETWORKS IN CONSIDERATION OF ACCURACY AND
RELIABILITY

L1 DEREN. { WUHAN. CHINA )

ABSTRACT

Up to now the well known optimization and design of geodetic networks are based on accuracy
criteron matrix / Grafarend and Sanso’, 1985 /. Since the increased study of reliability the
reliability parameters have been introduced into the optimization design of geodetic networks.
But in most <cases only the internal and external reliability ( i. e. the redundancy number)
are considered /Miller. 1986 Gu et al. 1989 etc../.

In this paper a new criterion matrix—reliability criterion matrix is suggested by author.
Starting from both of accuracy and reliahility criterion materices the mathematical formulae
for determination of the first and second order design materices are derived by using matrix
decomposition techniques. The correctness of the suggested optimization design method is proved
by wusing a numerical example. Moreover the applicability and the problems to be solved are
brifely discussed.

TKey words® Optimization design. Accuracy. Reliability. Criterion matrix, Matrix decomposition

1. GAUSS-MARKOV MODEL. AND THE LEAST SQUARE SOLUTION

The linear G- M model
ECL)=Ax. D(1)=02Qu=0,P" (1)
is given, in which weight matrix }' is a symmetric positve matrix and can be decomposed as
P=G'G (2)

with matrix G being a upper triangular matrix and inversable. If matrix P is a diagonal
matrix. then

G=po

Taking matrix transformation as fol lows

A=GA

T=c1 (3)
the model (1) is then written as

E<T)-Ax, D(T)h=ol] (4)

Obviously, model (4 ) and model (| ) are equivalent. From model (4 ) the error equations of
least Squares are

v+ T AKX PT;:I (5)

For a full column rank matrix A, i.e. rg(A)=rg(A)= u. the normal equations and their
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solution are

(A"A) x=A"T, x=(ATA) 'ATT (6)
and

Qxx:(KTF) - ! Dxx::o:lan (7)

Q'V_TZ 1 —KQxxK’ (8)

Here matrix Q.. reprensents weight coefficient matrix of unknown parameters and Q< =+
is weight coefficient matrix of residuals.

2. ACCURACY CRITERION MATRIX AND RELIABILITY CRITERION MATRIX

It’s well known that the weight coefficient matrix Q,, of unkowns or their variance-
covariance matrix D,, describe the precision character of unkown parameters. If we design
a matrix Q,, based on the requestion to the accuracy of a network, a accuracy criterion
matrix ( denoted below by Q.. too ) can be obtained. The optimization design of first
and second order will be done starting from this criterion matrix / Grafarend, et al. 1985 /

According to extended theory of reliability / Li, 1986 / the matrix Qv v~ in Eq. (8)

represents Jjust the reliability of the observations. Q= v is a symmetric and idempotent
matrix. i.e.

tr (Q+ 7)) =rg (Q+vv) =n—-u=r
The i—-th diagonal elements of matrix Q-+ —
r,= (Qv+)
represents the redundancy number of reduced observation T ,.

From formulae /Ackermann, 1981 /

vnT|: Og—— (%)
~ I,
and
i 1-r,
LIWE 51) — (%)
r,

we can find that the diagonal elements of matrix Q<+ + directly reflect the determinability
of gross errors involving in observations ( internal reliability ) and the effect of
non—determinable gross erros onto the adjusted results (external reliability ).

According to the separability theory /Li, 1986/ the correlation coefficient p,, between Vv,
and Vv,

P (10)

/(Q‘;’T) ,.'vﬁqtt) Jd

will indicate the separability of gross error in 1,and 1,(i.e. locatability of gross errors).
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For multiple gross errors in observations the corresponding correlation coefficient is
calculated by

SI(P")uSa 1)
Brs (540 §,) Sr—mmmeme i (
ST (P, ) s, /s (PL) LS,

where 5, and s, represent two different directions in p -dimensional space of multiple gross
errors respectively, and

(Pn;)lJ"_H:Q_’—HJ (" le 2)
In case the observations contaminated by gross errors are arranged together, we have
0
H, = ] 1, |
[0

Therefore (P,,) ., is in fact a corresponding submatrix of Qv +« .

Summarizing ahove discussion we can say that matrix Qv v fully describes the determinability
and locatability of gross errors. An adjustment system having fair reliability and
separability should satisfy at least the following two conditions:

a) The redundancy number of each observation r, should be identical or & (r,—(r . n)) *—
MIN, in which r, should be greater than a lower bound value r.,;

b) The correlation coefficient p,, should be less than 75% . i.e. separability for gross
errors should be greater than 95% .

In the same way as accuracy criterion matrix, the matrix Q~ v will be called reliability
criterion matrix. if we build it according to the regquestions to the reliability of geodetic
network to be designed.

Therefore. the optimization design of geodetic network in consideration of accuracy and
reliability can be summed up as to analytically determine and find out a first order design
matrix A and a second order design matrix P that can satisfy the given requestions of
accuracy and reliability criterion matrices.

3. OPTIMIZATION DESIGN OF GEODETIC NETWORKS IN CONSIDERATION OF ACCURACY AND RELIABILITY
REQUIREMENTS BY USING MATRIX DECOMPOSITION TECHNIQUES

Qur proposition is to solve a first order and a second order design matrix (i.e. Matrix A
and P) which can meet the requirement of the given accuracy and reliability criterion
matrices. For this purpose the matrix decomposition techniques are used.
STEP 1 : Decomposition of matrix Q,, with cholesky method

Quw =L7L (12)

in which L is an upper triangular matrix with rg(L)=u

STEP J1: Decomposition of symmetrical, positive semidefinite matrix (1 — Qv +
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(I -Qv=<)=D. D' (13)

in which rg(D)=rg(l1 - Q< <) =u and D'D= 1
u-u
STEP Il: Computation of matrix A by use of theorem of orthogonal triangular decomposition
of matrix.

It leads to

A=D. (L*)* (14)
[Proof]

According to /wang, 1986/ a full column rank matrix A can be decompsed to an orthogonal
matrix and an upper triangular matrix. i.e.

A=D-T (15)

n‘u n-uu-u

in which D'D =1 and T is an inversaable upper triangular matrix.

Considering Eq.(15) and (7 ) the matrix Q,, can be expressed as
Q= (L'D'D T) *= (L'C) *=T* (L™ "

In comparison with Eg. ( 12) and because of the uniqueness of orthogonal
triangular decomposition of a matrix we have

L=«(L™" (16)
In the same way, considering Eq.(15) and (8 ) the matrix Qv + can be expressed as

Qv+v=1-DT (L") *L*"D'=1-D-D"’

I -Qv+=D.-D".

Considering the character of orthogonal decomposion and comparing with the expression (13) we
obtain

D=D amn
From Egs.(16), (17) and (15) we get the final result

A=D (L™’
which is just the to be proved Eq.(14) .

It means that the matrix A, which consists of first and second order design matrix, can be
uniquely computed from the given accuracy criterion and reliability criterion matrix.

STEP [V  Deptermination of the first order design matrix A based on computed matrix A and
given matrix P

According to Eq.(3) and (2) we have
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GA=A and P=G'G (18)

If P is given, the inversable matrix G can be determined by decomposition of matrix P.
Thus the first order design matrix A will be computed by

A=G'RA=G"-D (L "7 (19)

in which matrices G. D and L are obtained from matrices P, Q< v and Q.. respectively.

STEP V. Determination of the second order design matrix P based on computed matrix A
and given matrix A

Our discussion here is restricted by the assumption of a diagonal weight matrix P . In this
case the structure of matrix G should be

v,
! VP,
G=P** =1 . 20
\/-P—,.
From Eq.(18) and (20) we obtain
~ Pdn a,, 2. —a_u ?lu
\IP: a,, ‘oo ves .ee a,. _a_l‘ _a..lu
~ -P_n a ni a na a [3Y E_n«
So the relationship
\.’/-P—:' a“:_a_,, Cj =1, 2, weeveeens u) 2D

can be easily found. It means that the elements of each column of matrix A should be
proportional to corresponding elements of matrix A. As it is usually not true, the weight of
each observation can be computed by arithmetic average:

P =—-< (——'———) : (for a,,Z=0) (22)

Where u’ =u-—-%k
k is the number of omitted elements with a,, =0 .
Because of the above treatment matrix A must be computed again (see step V).

It is still an unsolved problem, how to make second order optimization design for correlated
ohservations with full weight matrix P unter our conditions.

4. A NUMERICAL EXAMPLE

Below we take a very simple numerical example to prove the correctness of the above thought
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and derivation.

To determine the position (Xx. y) of new point P from six known points is assumed. The
observations are azimuth angles from each known point to new point P . The unit of side
length is kilometer. The designed accuracy and reliability criterion matrices are as follows

1/73 @

0 1/3

Ql!: }

and

2/3 -1/6 1/6 -1/3 1/6 -1/6
~1/6 2/3 -1/6 1/6 1/3 1/6
Qv v =] /6 -1/6 2/3-1/6 1/6 1/3
-1/3 1/6 -1/6 2/3 -1/6 1/6

1/6 1/3 1/6 -1/6 2/3 -1/6
-1/6 1/6 1/3 1/6 -1/6 2/3

To be determined is the first design matrix A under the assumption of P =1,
[Solution]

ST [: Decomposition of Q,, for getting matrix (L")~

1/v3 0
Qu=L'L=
[] 1 /\/,‘3—
it leads to
v3i 0
(L)'=
0 73

STEP 1+ Decomposition of (I — Qv v ) for getting matrix D

/3 1/6 -1/6 1/3 -1/6 1/6
1/6 1/3 1/6 -1/6 -1/3 -1/6

(1 -Qv <) =|[-1/6 1/6 1/3 1/6 ~1/6 -1/3
/3 -1/6 1/6 1/3 1/6 -1/6
-1/6 -1/3 -1/6 1/6 1/3 1/6
1/6 -1/6 -1/3 -1/6 1/6 1/3

It leads to
0 1
-3 1 72 I 0
D=¢(1t -~v3) [v3-2 -1 -2 (Test : D'D = )
0 -1 0 1
VT2 -1
v 32 1
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0 1

~3 2 )

A=KA=D- - (L) '=|-v5 72 —-1,2
0 -1

J3Is2 —1.2

v 372 1.2

From the geometry shown in Fig.! the coefficient of
error equations are
a,=-—sina,.” s,

(24)

b,= cosa, s,

Comparing the obtained first order design matrix A with
Eg.(24) we obtain the final results:

s, = 1 (Km)
a,=0, 60° , 120° , 180° , 240° , 300° !

It means that the six known points should be

homogeneously distributed at a circumference with 1 Km

long diameter and the new point P should be just the Fig.1 Forward intersection
center of this circle (also see Fig.l) from six points

In this configuration the best precision of unknown coordinates for new point and the best
reliability of the observations will be expected. The error ellipse of new point will be
circle. The redundancy number, internal and external reliability are respectively

rl:f/n:2/"3
vol,=5.060,
0,,.=2.92

Since the biggest correlation coefficient between two residuals is
| p | wax=50%,
the locatability of gross errors will be (see forstner,1983)
(1 —7v.) 299 (K.=3.29 , 6,=4.13)
In other words, any two gross errors can be separated with a probability greater than 999 .

If we neither change the reliability criterion matrix Q< v , nor change the precision of
azimuth observations, but only change the requestion to the precision of unknown point,
saying for example:

1 0
Qxx:‘( 1.7 4)

0 1

Through the decomposition of new Q,, above, we get the matrix (L ') T
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further

0 1
-V3.72 172
A=A=D- - (LM "=(2/V3) | -v3/2 —-1.2

0 -1
v3/72 —1./2
V32 1.72

According to Eq.(24) we have

s, =~/ 3./ 2 (Km)
a, =0, 60°, 120° , 180° , 240° , 300°

This result shows that, the shorter the distance between known and unknown point, the better
the precision of unknown point, when the configuration relationship keeps no change.

5. APPLICABILITY AND THE PROBLEMS

A new concept of optimization design of geodetic network in consideration of accuracy and
reliability criterion matrices has been put forward and realized by means of matrix decom—
position techniques. If both criterion matrices of accurecy and reliability are given, the
first and second order design matrix will be analytically computed. In principle it can be
used for optimization design in geodetic, photogrammetric and combined networks.

The only problem is how to build two criterion matrices, especially the reliability criterion
matrix, for a very large network. We can solve this problem in two different ways. One way
would be to find out some mathemathical techniques to set up the accuracy and reliability
criterion matrix, but this is very difficult.

Another way is to use the priori knowledge about first and second order design matrix.
We start from the given A° and P° matrices and compute matrices QJ, and Q%+, then
check whether they satisfy the user requestions to precision and reliability. If not, we have

to modify them by using some proper methods, and get Qg%x and Q@v. Now we can use the
algorithm in this paper and obtain the modified design matrices A° and P°, then check again
whether these two design matrices can be realized in practice. Repeat this procedure untill
the aim of optimization design has been reached.

Another unsolved problem in this paper is how to compute the second order design matrix P
from two criterion matrices, if matrix P is completely occupied. Like the variance-
covarianct component estimation we can maybe only estimate a part of elements in matrix P.

All of these problems have to be deeply studied, discussed and investigated further.
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