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INTRODUCTION

In order to detect time-varying effects of man-made constructions and buil-
dings deformation measurements have to be taken out, continously or discrete-
ly to different time epochs. For further investigations about the subject to
be controlled the deformation data will be analysed to see whether or not any
phenomena have been occurred. However, before such an analysis can be done one
has to preprocess the data very often because of noisy observations or to

eliminate some undesired informations whose frequencies are known a priori.

A mathematical tool for eliminating noise or any freqﬁencies known within
the observations is digital filtering, part of the digital signal processing
discipline, a relatively new field for surveying engineers. The filter is
realized by any filter coefficients, also called 'weights', to present the
filtered version of the observations as simple weighted arithmetic mean with
these filter coefficients in mind. All determinations of such coefficients
wé will call 'filter design' in contrast to the actual filter operation it~
self which is called 'filter implementation', whereby in filter design our

objective is directed towards a finite number of coefficients to guarantee

~always stable solutions of observations being filtered.

The design problem may be solved by different techniques known in digital

signal processing, generally to put into

- ad hoc methods

- optimization and approximation methods

where for example as ad hoc method might serve filter coefficients chosen
arbitrarily or to multiply ideal filter coefficients with given functions as

it is called 'windowing technique' and demonstrated in detail by J. F. Kai-
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ser (1966). The disadvantage of filter coefficients chosen arbitrarily is
that they could have some undesired influences on frequencies we are inter-
ested in; a difficulty for the latter method may be the computation of Fourier
coefficients for given transfer functions being approximated, what is gener-
ally not trivial because one has to determine closed-form expressions for

these coefficients.

Therefore the most flexible design methods are the optimization and appro-
ximation techniques known as the frequency sampling method (L. R. Rabiner/
R. W. Schafer, 1971, 1972) and the Chebyshev approximation method (L. R. Ra-
biner/B. Gold, 1975, p. 123); both methods are common optimization algo-
rithms such as the SIMPLEX- and the REMEZ-algorithm, only scarcely or not at

all available for surveying engineers.

However, in many cases, there is no need to use such algorithms because
similar results will be obtained by a very familiar method in surveying en-
gineering: the method of least squares, which can be optimized in the sense
of a Chebyshev approximation by additional inequality constraints as demons-

trated by D. Fritsch/B. Schaffrin (1980), D. Fritsch (1982).

The main subject of this paper will be to introduce the concepts of digital
filtering as means for preprocessing of deformation data, therefore filter
design is bounded on least squares approximations without inequality con-
straints. Procedures in filter implementation, where the user can choose
among slow and fast convolution algorithms, are also considered. There is
another bound in this paper in such way that one-dimensional filtering on-
ly will be regarded because in surveying engineering the observation of
time-varying functions results frequently into time series, which are one-
dimensional. Indeed, the concepts presented here are also applicable for
two~dimensional digital filtering problems as it is subject of D. Fritsch
(1982) and commonly for multi-dimensional digital filtering, but until now

only one- and two-dimensional digital filtering is solved sufficiently.

The digital filtering concepts presented later on regard the filters as li-
near systems with given transfer functions in contrast to H. Pelzer (1976,
1977, 1978) and W. MShlenbrink (1978), where the determination of system
features have been treated. But once the transfer functions are known these
digital filtering concepts might also be used to predict some deformations
or take into consideration any system behaviours on future time functions

to be measured.
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DIGITAL SIGNALS AND TRANSFER FUNCTIONS

\

Let x(t) be a continous one-dimensional function as it might appear in
surveying engineering as height, distance or angle etc. to observe conti-
nously in any time interval t € [to,tm_ll(see Figure 1). This function
contains analog data and therefore we will call it 'analog signal' which has

to be digitized by any sampling process tc get discrete data for easier data

handling.

A x(t) In surveying engineering the samp-
ling process will take place by mea-
surements to different time epochs

t = ti; as results of our measurements

between t = to and t = tm we get a

-1
sampled data set designated by

)]

h&=ta,x&=tﬂ,.“.,x&=t

m-1

t=t, t=t 4ot with M samples in all.

Figure 1: Analog signal This data set represents a 'digital

signal', which is causal and of finite
x{m)
“ length because of the definition of the

T‘ TT time interval and to describe by
x{m) for m € {0,1,2, ..., M-1}

assumed, that equidistant data sampling

1 —

~ will be used with AT as sampling inter-

t=t, AT t=tpy m
Figure 2: Digital signal val (see Figure 2). For the choice of

' AT the sampling theorem has to be con-
sidered (S.D. Stearns, 1975, p.37), otherwise by non-equidistant sampling
some interpolation methods will provide for equidistant sampling, but these

methods will not be commented on in this .paper.

With the digital unit sample (impulse) in mind,defined by

dm) = {1 m

=0 1 m=
O m#*O0

5 .
and d(m-k) = {0 m# k (1-1)

the signal x(m) can be presented as discrete convolution
M~1

xm) =) x(k) dm-k) =x(@ * dm (1-2)
k=0
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with x(k) as just the magnitude of the signal x(m); this convolution is

usually symbolized by an asterisk (*).

Now, the digital filtering operation what we are searching for with re-
sult y(m) (see Figure 3), will be derived from the theory of linear,time-inva-
riant systems (LTI systems) (L. R. Rabiner/B. Gold, 1975, p.13), because any di-

gital filter can be seen as such a system as demonstrated in D. Fritsch (1982).
“ y(m)

& Consider @ as an arbitrary operator
of a LTI system and x(m) as input sig-
nal, the output or filtered signal is

functionally related to the input by

P
-

t=t, t=t 4 ym = ¢ [x(m] (1-3)
Figure 3: Filtered digital signal

and for the input signal as just the unit sample d(m) the operator @ cha-

racterizes the response of the LTI system, generally to denote with
him) =@ [a@m] (1-4)

wich is called 'unit impulse response' or shortly ‘impulse response'.

Because of the assumption of linearity and time-invariance of our system

the filtered signal y(m) is given by both the relation

M-1
ym =] ] xkx) a w-k)]

k=0
M-1

=V x) g [@mkx]
k=0
M-1

= ] x(k) h(mk) = x(m) * h(m) (1-5a)
k=0

and by exchange of the variables with

M-1
ym =) h(k) x(m-k) = h(m) * x(m) (1-5b)
k=0
that is , the filtering operation is a convolution between the impulse res-
ponse of the filter and the signal to be filtered.
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An equivalent expression for (1-5) will be obtained by taking any unitary
transform on both sides; in our case, where frequencies have to be consid-
dered, an appropriate unitary transform is the Fourier transform, defined as
pair for a finite sequence (L.R. Rabiner/B. Gold, 1975, p. 25)

- M-1 i
X(e:l ) = z X(m)e J

(1-6a)
m=0
1T w3

xm = 2 [ xEe?)el™au (1-6b)
m

with j = V=1 and the continous frequency variable w € [0,2w]. By definition
' +5 ju
of the Eulerian notation e Jma cosmw * jsinmw the complex function X(ej )

is a periodic complex function X(ejw) = x(e3w+2k“) for k € // and to express

by both

Juy Ju ; Ju _
X(e”7) = X  (e77) + jX. (e7) (1-7)

and

. . juw
X(ejw) ejargx(e )

]

|x(e3Y) | (1-8)

with XRe(er) as real part and xIm(er) as imaginary part, also used in the
2

second notation for the amplitude gspectrum Ix(ejw)l = v&;e(ejw) + xI

m(ejw) and

the phase spectrum argx(ejw) = arctan {xIm(ejw)/XRe(ejw)}. A further important
property of the Fourier transform is its shifting theorem, which means, that

the transform of any shifted sequence will bezsgé x(m—k)e_jmm = e_jkwx(ejw)
(V. Cappellini/A. G. Constantinides/P. Emiliani 1978, p. 16). With all these

considerations in mind the Fourier transform of (1-5) is given by

M=1 » M-1 M-1 .
Y yme ™ = ¥ ne [} x@k)e™I™]
mn=0 k=0 m=0
— v(e¥) = mEe¥)x(Y) (1-9)

and it just shows that convolution in the time domain is converted to multi-
plication in the frequency domain. The function H(ejm) is in general called
'transfer function', because the system (filter) behaviour is transferred into
the variable w; however since w is frequency variable we will call it 'fre-
quency response', then it is just the response of the LTI system or filter in

the frequency domain.
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In surveying engineering we can classify our measurements into determi-
nistic signals or statistical signals, respectively; the first ones are to
describe completely by sinusoidal functions (Fourier series) and the latter
ones are only partly or not at all to describe by those functions but known
in the statistical sense with given moments. Therefore one needs frequency
responses which are taking into account such a separation, as result we have
both: deterministic and statistical frequency responses. Another desired
goal in the filtering process will be the preservation of the phase informa-
tion of the signal to be filtered, what is resulting into pure real and even

frequency responses.

At this point we are in a position to determine digital filters with ide-
al deterministic frequency responses directly; these are known as lowpass-,
highpass-, bandpass-~ or bandstop-filters (see Figure 4), depending on the
task the filter has to fulfill, namely to let unchanged that part of the

amplitude spectrum of the signal to be filtered we are interested in.

a) lowpass A |H(ej"’)] b} highpass A |H(ej"’)|
—_— 11 —_—
1
0 1)
¥ - —t 4+l
-n -ug 0 we T -1 -u, 0 we T w
c) bondpass i lhei d) bandstop A |Hiei)
11- 1
0 0
» P -4 +—-
-n ~Uc, -uc1 0 e, we, ™ w - -ucz -uc, 0 we, o, w

Figure 4: Ideal deterministic frequency responses of digital filters

There are also possibilitiesto have multiple bandpass- and bandstop fil-
ters as it is necessary to pass or stop different frequency bands in one
filtering process. That means there exist passbands ané‘stopbandsboundedin

each case by a cut-off frequency wc, with the following constraints
i

passband: |H(ejw)|

I

1

3 (1-10)
stopband: fH(er)l

o
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For the derivation of statistical frequency responses wé must have at first

a look at the signal to be filtered, which will be
x(m) = y(m) + r(m) (1-11)

with x(m) which contains our measurements disturbed by any errors or noise
r(m), and y(m) as faultless or true signal what we are searching for. In
this case the digital filter has to provide for an estimate ¢(m) of y(m),
where the Wiener filter will be used; as optimality criterion it minimizes
the variance 02 of the estimation error € (m) = y(m) - ¢ (m) defined with the

expectation operator E as
2 2 .
o = E[{em) - Elem)1}7] = min (1-12)

For stationary x{(m) and the mean values E[y(m)] = 0, E[}(m)]= O as well as
E[ﬁ(m)] = 0 the solution of (1~12) results into the discrete form of the
famous Wiener-Hopf integral equation (D. Fritsch, 1982)

M-1

Ryx(K) =kzo hik) Rxx(K—k) = h(k) * Rxx(K) (1-13)
in which it is denoted by Ryx(K) the crosscorrelation function between y(m)
and x(m) with correlation lag k € {0,1,2,...., M-1}, Rxx(K) the autocorrela-
tion function of x(m) and h(k) the impulse response of the Wiener filter.
This convolution could be solved as linear equation system, but for larger
data sets the inversion of the autocorrelation matrix Bxx may cause some
trouble if it has not an special structure as Toeplitz matrices have. -But by
taking the Fourier transform on both sides of (1-13) the convolution sum is

transferred into multiplication of

jo, Jw jw _
Syx(e ) = H(e™ ) Sxx(e ) (1-14)

with Syx(ejw) and Sxx(ejw) as Jjust the power spectra and H(e’’) the fre-

quency response of the Wiener filter.

Are the signal sequence y{(m) and the noise sequence r{(m) not correlated
with each other, as it can be usually presupposed in surveying engineering,

thie following relation for the frequency response H(ejw) will be obtained
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‘' s_(e’")
H(e™) = - — (1-15)
) + 5%
vy rr
because then simplifications are valid in such a way that Ryx(K) = R (k)

and Rxx(K) =R _ (k) + Rrr(K) with its appropriate power spectra S (ejw

)

and S (ejw).
rr

With all these considerations in mind one has to decide about basic assump-
tions on necessary correlation functions by which the Wiener filter is defi-
ned. On the one hand it is likely realistic to consider our noise process as
white noise because the measurement errors are independent from each other;
but on the other hand one could also work with colored noise processes if
this basic assumption is not true. Let us suppose a white noise process r(m),

then its correlation function will be
R__ (k) = 02d(x) (1-16)
rr r

2
with g, as variance of r{(m) and the unit sample d(x); the power spectra of

this correlation function is constant over the whole frequency domain with

s_ (e’ = o°. (1-17)
rr r

For the true signal y{(m) some correlation functions may be introduced with
decreasing behaviours for increasing correlation lags. Such a correlation

function was derived in D. Fritsch (1982)

R (k) = ozalK| for 0 < a<1 (1-18)
Yy y

just as result of a lst. order Markov process for our true signal y(m); the

power spectra of this correlation function is given by
. 2o2lna
s (ejw) = - __Z—_E—_—E (1-19)
Yy (lna) + w )

With the power spectra (1-17) and (1-19) the frequency response of the Wiener
filter will be
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jw 1
) = ; (1-20)
cf_{ (lnov.)2 + wz}

1 -

2021na
Y

which can be interpreteé as optimal lowpass filter for Gi > 03, what is pre-
dominantly the case in surveying engineering. Another digital filter for an
optimal filtering of noisy observations was introduced by K. R. Koch (1975),
where the digital version of the frequency response of a Butterworth filter

was used to approximate an optimal filter.

All our optimal filters described here have to be fitted onto the data to

2
be filtered and thus for given variances UY and Gi one needs the interdepen-
dence of the signal y(m) which one can only estimate if y(m) has the ergodic

property in addition to being stationary.

DIGITAL FILTER DESIGN

The design problem of digital filters consists of approximations of ideal
frequency responses previously introduced, but before we will solve these
approximation problems the functional relations between the impulse respon-
ses and the ideal frequency responses of digital filters must be given in

more detail.

Since digital filters can be seen as LTI systems the following difference
equation is valid
K-1 L-1
Y ak)x(m-k) = J b(l)y(m-1) : (2-1)
k=0 1=0
it delivers with b(0):= 1 and b(k):= O for k *# O as well as for h(k) = a(k)
the nonrecursive digital filtering algorithm or convolution
K-1
y(m) =7} h(k)x(m-k) (2-2)
k=0 :
with K < M, and this equation just shows that the convolution process (1-5)
is reduced into fewer summations. Because of this finite summation the
digital filter is called 'finite impulse response filter' (FIR filter)
in contrast to an 'infinite impulse response filter ' (IIR filter),

where the convolution sum tends to infinity and therefore filter
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design and implementation have to be done otherwise as demonstrated later

on.

A further important point in filter design is the linear phase behaviour of

the FIR filter, which means that for any frequency response H(ejm), defined as

jw jw, | -Jow Kt -jkuw
(') = |H(e?) [T = ] hxie™ (2-3)
k=0

one 1s searching for the linear phase shift ¢ with result (D. Fritsch, 1982)
K-1
o= (2-4)
h(k) = h(K-1-k) (2-5)

that is the impulse response of a linear phase FIR filter has to be a sym-

metrical one around its center ¢ = 5%1-.

With these two constraints in mind as relations between the impulse response
and the frequency response of a FIR filter with linear phase will be obtained
(L. R. Rabiner/B. Gold, 1975, E. U. Fischer/H. Friedsam, 1977) in the K odd

case
‘o —j[E%EJw (K-1)/2
H(e”) = e { a(k)cos(kw)} (2-6a)
k=0
or in the K even case
K-1
. —j(———Jm K/2
eI = e 2 { ) b(k)cos[(K-%Jm]} (2-6b)
=1

k

with the simple substitutions a(k) and b(k) for the impulse response h(k) in
such a way that it is holding

K-l}

a(o) = h(K—;l], at) = 2n(&L 2 k) for k€ 0,1, 5 (2-7a)
b(k) = 2h(32<-~k] for k € {1,2,....,-125} . (2-7b)

As it can be seen by (2-3) and (2-4) the bracket terms in (2-6) are the re-

lations what we were searching for, so that for the pure real and even
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ideal frequency responses previously mentioned w can be boundedon w € [0,n] .

For the approximation of ideal deterministic frequency responses there is
a need to have so-called 'transition bands' because of the Gibbs phenomenon,
by which it is stated, that truncation of Fourier series for a rectangular
function leads to a fixed-percentage overshoot in the approximation. That is

the reason for the following constraints

passband: |H(ejwﬂ

|
—

(2-8)

|
(=]

stopband: |H(ejwﬂ
transition band: increasing (decreasing) behaviour

in contrast to the statistical frequency responses which are being approxima-

ted directly.

For a least squares approximation we have to minimize the total mean square
2
error Ops defined by
2t jw Jw, |12
ol = J‘[|H(e:l )| - |H"‘(e:l )|] dw = min
t o (2-9)
with IH(er)| as ideal and |H*(ejw)| as approximated frequency response;
the numerical evaluation can only be done by sampling of the frequency domain.
This sampling process for deterministic frequency responses must take place in

the pass- and stopbands only, whereas for statistical frequency responses the

whole frequency domain has to be sampled (see Figure 5).

“ H{L}
—=! pass- rans=m stopband-=—
1

a) deterministic b) statistical

Figure 5: Sampling of lowpass-filters in the frequency domain

Let H(l) for 1 € {0,1,2,....,L-1} be the sampled value of the frequency res-
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ponse for the sampling point w; = lw/(L-1) and H*(1) the value being approxi-

mated, as approximation error we can define

e(l) = H() - B¥(1) (2-10)

so that with the functional relations (2-6) in mind the following model is va-

1id for all sampling points in the frequency domain

(2-11)

in which it is denoted by the Lxu Matrix X with rk(X) = u all cosine coeffi-
cients given on the sampling points, the uxl vector B contains the unknown
filter coefficients a(k) or b(k), respectively, the Lxl vector y is standing
for all values of the frequency response being sampled and e is the Lx1 vector

of approximation errors.

The minimization of the quadratic form of e leads to the well-known normal

equations in least-squares

14
™
1>
]
1<
<

(2-12)

with its estimates f of the unknown filter coefficients and the vector & of

approximation errors given by

B= o lxy (2-13)

1o
fl
<
|
1
10

(2-14)

which are influenced unimportantly by the density of our sampling points. As

goodness of fit for the approximation we should use the maximum approximation
error to define for both the passbands and stopbands in deterministic filter
design as SP = max |éPi| and SS = max Iési|, whereby & is to be separated into
ép and éS or in statistical filter design the maximum approximation error will
be : § = max |éi|, instead of the mean square error as it is usually the case

in surveying engineering.

Maximum values SP and 8S we will have at the edges of the passbands and

stopbands, so that on the one hand wider transition bands will provide for
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an improvement of these values or on the other hand more filter coefficients
also results into better approximations, but one has to keep in mind that the
longer the impulse response will be the longer computation time is needed for

our filtering process. v

DIGITAL FILTER IMPLEMENTATION

In order to carry out the actual filtering operation itself let us take the
convolution sum (2-2), which defines the filter, so that with the informations
(2-5) about the symmetries of the impulse response the following convolutions

will be obtained, both for the K odd case

y(m) = h(K—gl—}x(m—Kz;l) + 1 h(-K;—l * k) [x(m-%i-k)+x(m-%+k)](4-1)
=1
and for K even
K/2-1
ym) = } h(k) [x(m-k) + x(m-K+1+k)]. (4-2)
k=0

Now, let us see what happens, if these convolution sums define also the fil-

tering process. With our pure real frequency responses previously introduced,
: R . jw =
which are to describe with H(e’") = H(w), the linear phase behaviour of a FIR

filter is given by

(-1
ju, _ = 355w
H(e- ") = H(w)e (4-3)

and with (1-9) the filtering operation in the frequency domain will be
. (K-1
. -3 ,

w _
v(el®) (w)x(e7)

150 (4-4)

whereby ?(ejw) is the Fourier transform of those filtered values what we

are searching for. Equation (4-4) shows that the linear phase FIR filter pro-
vides for a phase shift in the frequency domain and with the shifting theorem
of the Fourier fransform an equivalent expression of (4-4) in the time domain

is given by
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- K-
ym) = y(m —Tl) (4-5)
with ¥(m) as zero phase shift filtered value; it also shows that zero phase
will be obtained by shifting of all our filtered values y(m) by (K-1)/2 samp-
les. Furthermore, as one can easily see, an even length of the impulse res-

ponse of the filter delivers zero phase shift filtered values not defined on

the sampling points but in the midst of it.

By substitution for k=k-(K-1)/2 the zero phase shift impulse response ﬁ(k)

is obtained, since the following relation is valid

k-1 K-1
, -i(5e (k-1)/72 -3 (k+ 5w
HeY) = Hwe 2 = h(k)e 2
k=-(K-1) /2
588 w2
=e T howe ¢ (4-6)

=-(K-1)/2

and for this zero phase shift impulse response the convolution sum (4-1) can
be rewritten in
(k-1)/2
y(m) = h(o)x(m) + Z h(k) [x (m-k) + x(mt+k)] (4-7)
k=1
which shows, that the filter needs (K-1)/2 samples in order to swing in and

out at the beginning and the end, respectively, of the data definition.

For longer sequences to be filtered there is another implementation method,
called 'fast convolution', in contrast to the convolution sums previously de-
fined, which are called 'slow convolution' or 'direct convolution'. The fast
convelution algorithms are based on the presentation of the filtering opera-
tion in the frequency domain, therefore (1-9) has to be rewritten into a nume-

rical form
Y(k)=H(k)X(k) for k € {0,1,2,....,M-1} (4-8)

whereby these discrete sequences will be obtained by taking the discrete Fou-
rier traansform (DFT) of the sequences y(m), h(m) and x(m), which still has tobe

defined.

Let x(m) for m € {0,1,2,....,M-1} be a discrete sequence, then its DFT is
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defined by

M-1
X(k) = 2 x(m)e
m=0

-3 2mkm/M for k € {0,1,2,....,M-1} (4-9a)

and also the inverse DFT (IDFT) can be given as

M-1 .
X (k) &) 2mhn/M

x(m) = (4-9b)
k=0

1
M
(L. R. Rabiner/B. Gold, 1978, p. 448), in which the frequency variable w is

sampled at w, = 2mk/M.

k
However, corresponding to the definition of (4-8) all discrete frequency se-
quences have to be of the same length, but unfortunately this is not the case
for our data sequences, where k € {0,1,2,....,K-1} and m € {0,1,2,....,M-1}
with K < M. This problem is to be overcomed by adding of zeros to the original

data sequences so that we will have sequences of length

h(m) := hk) for m € {0,1,2,....,K-1}
h(m) := 0 for m € {K,K+1,....,K+M-2}
(4-10)
%(m) := x(m) for m € {0,1,2,....,M-1}
%(m) := O for m € {M,M+1,....,K+M-2}.

The computation of the DFT of h(m) and %(m) can be reduced significantly if
the length of both sequences is a power of 2, because then algorithms of the
fast Fourier transform (FFT) can be used (S. D. Stearns, 1975, p. 74); that
is the reason why it is called 'fast convolution' and therefore the length has

1

tobe : L = 27 > K+M-1. The filtered sequence y(m) is contained in the sequen-

ce ¥(m) and to recover by
y(m) := §(m) for m € {0,1,2,....,K+M-2} (4-11)

where ¥(m) is being contained by the IDFT of Y(k).
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EXAMPLE

For the control of a brown coal opencast mining distances have been measu-
red to different time epochs between fixed points and endpoints of slopes,
where changes are to be expected. These measurements were performedin different
time intervals, but for most of the measurements aninterval of 7 [days] was
used. In Figure 6a the measurements of one distance are sketched; these measu-
rements have been interpolated for a digital filtering operation to a regular

data sequence at a sampling interval of 7 [days] (see Figure 6éb).

‘ %(m) [mm] x(m} [mm]
° °
+20 T (T +20 o
o g1 Ml
-0 ¢ =20

L o
— %
*:’
3
~
=]

(.
I
4 + 4 P

0 100 200  [days] lo 100 200  [days]
Figure 6a: Original data Figure 6b: Equidistant data
sequence X(m) sequence X (m)
A (xwl The DFT of the sequence x(m) delivers
T the spectral sequence {X(k)|, where be-
500 9

cause of the periodicity only the inter-
val w € [o,n7] has to be considered

(see Figure 7).

It is desired to eliminate all higher
fluctuations within the data sequence

TT TIT j_? x(m) with frequencies & 2 0,33%. For
? ? ? Q9 L’
; wk solving of this problem a lowpass filter

o

has been designed with specifications
Figure 7: Spectral sequence X(k) wp = 0,26T, g = 0,407 and N = 9,
so that the results of the filtering process obtained by the slow convolution

can be seen in Figure 8.
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¥(m)} [mm]

+20
1
1o,
0
-20
-40
t,m
4 -
To 100 200 {days]

Figure 8: Zero phase filtered data sequence y(m)

CONCLUSIONS

In this paper the concepts of one-dimensional digital filtering were intro-
duced and explained in detail. It was shown that digital filtering is an appro-
priate tool to eliminate any frequencies within our data sequences we are not
interested in or to eliminate any noise within our observations. Furthermore
the digital filtering concepts were demonstrated by an example of real defor-
mation data. A recommendation for all users of digital filtering processes in
surveying engineering may be to perform the measurements in equidistant time

intervals, if it is possible, in order to prevent any interpolation method.
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SUMMARY

In this paper the concepts of one-dimensional digital filtering are trea-
ted. After the introduction of frequency responses for deterministic and
statistical signals the design problem is solved by the method of least
squares, widely used in surveying engineering for any estimations of para-~
meters and approximations. Also the filter implementation is described with
special emphasis on the discrete Fourier transform, which is also needed for
informations about frequency contents of signals to be filtered. An example
of a digital filtering operation of real deformation data shows the ability

of these concepts.

ZUSAMMENFASSUNG

In diesem Beitrag werden die Verfahren des digitalen Filterns aufgezeigt.
Nach der Einfilihrung von Frequenzantworten flir deterministische und statisti-
sche Signale wird das Entwurfsproblem unter Zuhilfenahme der Methode der
kleinsten Quadrate geldst, die in der Ingenieurvermessung vielfach flir Para-
metersch&tzungen und Approximationen Verwendung findet. Des weiteren ist die
eigentliche Filteroperation beschrieben, bekannt als 'Implementierung'; be-
sonderer Wert wird hier aer diskreten Fouriertransformation beigemessen, da
diese ebenso den Frequenzinhalt des zu filternden Signals aufzeigt. Ein
Beispiel der Filterung von reellen Deformationsdaten soll die Fdhigkeit die-

ser Konzepte demonstrieren.
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