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AUTOMATIC GROSS ERROR DETECTION BY ROBUST ESTIMATORS

Hans Werner

Abstract: The theoretical foundation of robust estimators, which are unaffected by gross errors,
is presented. A way is shown how to robustify the least squares method against gross errors with
weight functions. Finally, some empirical results on the elimination of gross errors by robust
adjustment, concerning horizontal blockadjustment with independent models, are shown.

Zusammenfassung: Die theoretischen Grundlagen von Robusten Schdtzern, die unempfindlich gegen
grobe Fehler sind, werden vorgestellt. Es wird gezeigt, wie die Ausgleichung nach der Methode

der kleinsten Quadrate durch Einfiihrung von Gewichtsfunktionen robust gegen grobe Fehler werden
kann. Einige Ergebnisse empirischer Untersuchungen zur Elimination grober Fehler mit einer robusten
Ausgleichung anhand der Blockausgleichung mit unabh@ngigen Modellen (Lage) werden erldutert.

Résumé: Dans 1'article suivant seront présentées les bases théoriques d'estimateurs robustes
insensibles d de fautes. On montrera comment la compensation suivant la méthode des moindres
carrées peut €tre rendue robuste d de fautes par 1'introduction de fonctions de poids. On ex-
pliquera quelques résultats de recherches préliminaires empiriques pour &liminer de fautes par
une compensation robuste d 1'aide de la compensation planimétrique de blocs avec des modéles
indépendents.

1. INTRODUCTION

Since it is possible in geodesy, by application of efficient computer programs, to treat large
data-sets in Least-Squares-Adjustments, the automatic gross error detection has become more and
more urgent, because manual error detection in such cases is lengthy and difficult.

The recent error-searching-methods in three steps of mathematical modelling, adjustment, and
test of the results presuppose a certain statistic distribution (normal distribution at most)
of the data. But this assumption is not fulfilled if gross errors exist, so the statistic tests
may fail sometimes.

A possible way out is the application of robust estimators, which are largely unaffected by
gross errors. This insensitivity against gross errors is attainable in one step by modification
of well-known methods.

We will call any method as robust, when it allows to get a result unaffected by gross errors.
The iterative manual procedure of error detecting by adjustment, examination of the residuals,
rejection of observations and new adjustment is in this meaning a robust method. Contrary to
that, however, robust adjustment should be fully automatically, without any manual operations.

At this point we can consider as the main aim of robust estimation:

1. isolating clear outliers,
2. building in safeguards against unsuspectedly large amounts of gross errors,
3. putting a bound on the influence of hidden contamination and questionable outliers, and

4. still being nearly optimal at the strict parametric model (see Hampel, 1973, p.91).
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The detection of very large gross errors and error clusters has to be done by means of plausi-
bility controls, for example sequential methods like searching for groups of correct observations
(see Weller, 1982). Medium gross errors can be eliminated by robust adjustment (Werner, 1982),
while small gross errors can be detected with (statistical) tests (Klein, Forstner, 1981). Since
the used robust estimator is sensitiv enough, it is under favourable circumstances no Tonger
necessary to subsequently test the results of a robust adjustment, because a robust estimator

can operate for small gross errors like a statistical test.

First of all, we will reflect upon the Least-Squares-Adjustment in the next chapter in a more
general frame.

2. ESTIMATION OF UNKNOWN PARAMETERS

With a given sample (e.g. photogrammetric model coordinates), taken from a population, unknown
parameters are to be estimated. A stochastic and a functional model is necessary in order to
estimate these unknowns by means of an estimation function. With this estimator we get approxi-
mations of the unknowns. These approximations are in a sense optimal, depending on the actual
purpose of the estimation method.

Starting with the observation equations
h -
T+v = AX or 1i+vi = jil aijxj H i=1...n (2.1)
the Least-Squares-Adjustment (Gauss-Markov-Model) will minimize the weighted sum of the
residual squares:

T n ( h )2 n
v 'Pv = min or tp, (1.-3 a, x,)%= 2 p,v: =min 2
=ttty M i=1 (2.2)
which leads to the normal equations
T T 0 h
A'PAx-A'P1 =0  or op, (-5 a,x)a. =0 3 j=1..h (2.3)
i=t " k=1 ! '

The solution is called Least-Squares-Estimation of the parameters

~

x = (ATpA) " TATP1 (2.4)

and of the adjusted observations

~

1= a(ATpA) TATPI (2.5)

This method may be understood as a special case of a more general estimation method, defined
as follows:

"Each estimation function @n, defined by a minimum problem of the form

£ (1,8 ) = min (2.6)
or by an implicite equation
. 1: observation vector
zy(l,8 ) =0 (2.7)

n én: estimation function
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with

v(1,6.) = 20(1,8,)/20, A (2.8)
is called M-estimate (or Maximum likelihood type estimator)"(see Huber, 1981, p. 43 or Rey,
1983, p.90).

If we choose for the estimation function p in eq. (2.6) a Togarithmic density function

p(x,8) = 1n f(x) (2.9)
we obtain the ordinary Maximum-Likelihood-Estimator:

£ In f(x) = max (2.10)
or

3
ZaTi]n f(xi) =0 (2.11)

In the group of M-Estimates exist robust ones which are less sensitive against outliers than
the Least-Squares-Adjustment. In the next chapter we will modify the Least-Squares-Adjustment
in a simple way and robustify it against gross errors,

3. ROBUST ESTIMATORS

In order to robustify the M-Estimators against gross errors and to gain the aims of robust
estimation (see above), for p(1, én) or v(1, én),respective1y, in eq. (2.6) and (2.7) functions
are used, which are less sensitive against gross errors. The sensitivity against gross errors
of functions p or y respectively, can be shown by means of the influence function. The influence
function indicates the effects of outliers on the results and is proportional to the function
(see Hampel, 1973, p.98; Huber, 1981, p. 45 or Werner, 1982, p. 14). In other words: with the
selection of a function ¢ we can design robust M-Estimators with certain properties.

An M-Estimator can be robustified by the following arrangements (see Fig. 3.1):

@ by putting a bound on |¢|: gross-erroresensitivity,

@ by putting a bound on the absolute value of the slope: Tocal-shift-sensitivity, the
sensitivity against small shifts between model and estimation,

@ by setting y=0 outside a certain point: outliers, located beyond this point will
be eliminated, '

@ by going down to zero (in the Tocation case) on a certain hyperbolic tangent,
the change-of-variance-sensitivity: small changes of observation errors shall not
cause Targe changes of the influence on the results and

® by putting (in the same case) a stricter bound from below on the slope in order to
minimize the number of iteration steps{see Hampel, 1973, p. 98),

The following diagram serves to illustrate these conditions: the function y should be designed
so, that it will not Teave the dotted area.
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Fig. 3.1

To robustify the Least-Squares-Method for practical application we use variable observation
weights. In the case of ordinary Least-Squares-Adjustment we minimize:

R p(v.) = min (see eq.(2.6)) (3.1)

with
o(V.) = p. V. (3.2)

where the weights p; are constant during the whole adjustment. For Robust-Least-Sgquares-
Adjustment we choose weights as a function of the residuals vj :

(3.3)

The first step of iteration is a conventional Least-Squares-Adjustment with constant weights.
New observation weights are computed from the residuals of the previous adjustment. With these
new weights a next adjustment is started and this procedure is repeated 5...20 times. At last
observations contaminated with gross errors obtain the weight P, = 0 and their residuals are

a measure for the magnitude of the gross errors (see Krarup et al, 1980, p. 373 and Werner,
1982, p. 16) .

In order to gain such weight functions p(vi) we have two alternatives:

1. choice of a function p(v) or y(v)=93p(v)/5v and derivation of
a weight function by transforming with eq. (3.3):

p(v) = E_(ﬁ 5 C<<1 (3.4)
v2+c
(c is a small constant to avoid division by zero in case of exactly vi=0;
see Krarup, 1980, p. 378).

2. choice of a weight function p(v) and verification of it's robustness with
eq. (3.3) and eq. (2.8).
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For example the Minimum-Norm-Method uses the following functions:

o(v) = [v[% 5 0<q=<2 (3.5)
1
v) = .
P(v) m H c<<1 (3.7)
ks [ P
A"
OZ q:k 0(,40 oée
ok -
o c’,11 7 Za
! 11 575 14 <12
X ‘ 25
, v ] vl ] -
Fig. 3.2

For q=1.2 the conditions (O and @ are nearly fuifilled, but not the other ones (only
poor robust characteristics). For q=1 all errors cause the same influence, independent from
their size. Finally for g=2 we get a non-robust Least-Squares-Adjustment with constant
weights, wherein the influence of an error on the adjustment results grows proportional to
the size of the error.:

While under the Minimum-Norm-Method the weight functions are independent of the number of
jteration steps and of precision of observations, under the Danish Method (see Krarup et al,
1980, p. 374 or Krarup/Juhl, 1983, p. 132) the weight functions are controlled by the global

precision o and the number of iteration steps:

first iteration: p=1 (3.8)
2" ang 3 iteration: p = exp(-O.OS(%)4'4) (3.9)
following iterations: p = exp(-O.OS(%)3'0) (3.10)
If we generalize the eq. (3.9) and eq. (3.10), we have
p, = exp(-a |v,[)¢ (3.11)
with
o = 1 k = — 1 (3’12)
I, r. o, k
i i li
and -
OO R
k = kf = ) min,max(k) = 1.0, 6.0 o,: estimated precision
AO (3.13)
c)’O
d = d( ) min,max(d) = 1.0, 10.0 9,° oo-a-priori
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The new weights are dependent of the residuals v, their precision Oy, and the ratio between
estimated precision 80 and o, -a-priori (Werner, 1982, p.20 and p.50). Since eq. (3.11) leads
fast to very small weights, Werner (1982, p.20) used besides the exponential weight
functions eq. (3.11) a hyperbolic function:

1 .
1+{a |v|)d (3.14)

The influence functions, belonging to eq. (3.11) and (3.14), are fulfilling the conditions
@ - ® (see above), or differ from them only slightly. Therefore sufficient robust charac-
teristics are reached, as shown in the next chapter.

In order to gain an unobjectionable Least-Squares-Solution, at the end of the robust adjustment,
each observation with weight piless than a bound Py > will be eliminated by setting the weight
to zero: P, = 0. The observations with weight P greater than the bound Py will be used in

the last Least-Squares-iterationstep with their a-priori-weight:

(v) +1
piv <p, pfv ) - 0 {3.15)
1 ..
pgv)z_po : p$v+ ) - p; - a - priori (3.16)

(v+l): Tast iteration step

The experimental program SNOOPY (see Werner, 1982), which enables a robust block adjustment
with independent models for photogrammetric horizontal blocks, was written to demonstrate the
practicability of a robust adjustment for the elimination of medium and small gross errors.

A few experimental results are presented in the next chapter.

4, APPLICATION TO HORIZONTAL BLOCK ADJUSTMENT WITH INDEPENDENT MODELS

The horizontal block adjustment has been chosen, because it is significant twice for photo-
grammetry: at first it enables to compute the horizontal coordinates in a two-step block adjust-
ment (horizontal/vertical); secondly the horizontal block adjustment can serve to compute
approximative horizontal coordinates in a one-step block adjustment with bundles.

Three questions had to be answered to realize a robust adjustment with the program SNOOPY:

1. choice of parameters for the weight functions,
2. break up point and convergence behaviour of the iterative adjustment process, and
3. the consideration of the geometry by means of redundancy numbers r, -

Only a few results of the investigations concerning these questions can be presented here,
for further details see Werner (1982).

The parameters in eq. (3.11)-(3.14) can be thought as "sensitivity screws" of the robust
adjustment. The essential problem at this point is to find a compromise between a too weak
adjustment, where too few observations contaminated with gross errors are eliminated, and

a too strict adjustment, where too many observations are marked as wrong. An independence of
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the parameters from the adjustment problem and from actual data could not be obtained.

2 results
o
a1 > w
1] “ el c o~
3|+ o o o
c|lo [ + b=
IS — ] w o
gls |2 2|3 | 3255
o 51 15 S | |E E,g L Table 4.1 contains the results of
— oo | v - c o . .
% ®c|o | g g = 3 = g 0 é robust adjustment concerning three
UV C - - o~ - . . .
E| 290|015 bt g Q g 7’_35, ,j_v_: different horizontal blocks with
1S < 0 . . .
9 g ” ‘3-§ S 1% g 5 E ‘6 2 ‘g‘: increasing number of points per
c
12 Lcl28152] 5 |6w|buwlao|6° model (columns 2 and 3 ).
g | & eEl2o1 2 23 IE3|ECIES b di ;
213 "5 ~./5c| 5§ |§2|E2|565 §a Each block has been adjusted with
0 a | [S 3= I I =R c cojcojlco c~ A A .
and without consideration of geo-
1| 2| 3| 4] 5| 6] 7/ 8| 9] 10
metry by means of redundancy
Al| b4 [0.22| yes | 10| 22| 9 1 4 5
A2 no 23| - | - |10 |10 numbers r. (see col. 4).
B1| 6 [0.31] yes 9| 14| 9 - 1 1
B2 no 20| 8 1 1
C1{v15|0.46] yes 7 81| 7 - - -
c2 no 1317 - - -

The horizontal block adjustment with independent models is normally treated as a linear problem.
However, strictly viewed the observation equations are nonlinear, because the unknowns are con-
nected by a product:

1

1
o

a(x
—b(x1+vX1) + a(x2+vX2) +d - y?

2 _ oyl =
+vX1) + b(x +VX2) +Cc-y (@.1)

1l
o

with the observations x!, x2 : measured model coordinates
and the unknowns y*, y2 : adjusted ground coordinates
a,b,c,d: transformation parameters

Therefore we have to iterate and must use approximation values for the unknowns. In the case of
ordinary Least-Squares-Adjustment it converges after three iterationsteps at most. Usual the
iterations will be ended, if the maximum addition to the approximative coordinates is less than
a given bound (convergence) or if the addition will grow (divergence). Concerning the robust
adjustment the maximum addition may vary by reason of different weights per iteration step. In
this case the addition is not able to show convergence or divergence.

Hence we have to change the end-of-iteration-question:

1. In the case of robust adjustment 80 will converge, because after each iteration step
more gross errors will be eliminated. As Tong as the estimated weight unity 80 is larger
than the o,-a-priori, the iteration shall be continued.

2. As convergence criterion the additions must be standardized by their precision:

|ax. |
-— _  max j
max j g

(4.2)
ij

3. The minimum and maximum number of iteration steps should be ordered by the operator.
The number of false decisions increases with increasing number of iterations, as shown in

table 4.1, column 6 and 10. By reason of the poorly defined boundary between small gross errors
and Targe random errors the end of iterations is problematical (see Klein, 1984).
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As table 4.1 shows, the density of points per model is essential for the gross error elimination:
the larger the (average) redundancy numbers, the better are gross errors eliminated (table 4.1,
col. 3,6,10). At the same time it is more and more important to use redundancy numbers, the fewer
points a block has and the less homogeneous the observations are distributed. This was verified
for photogrammetric measurements only, but {it is certainly valid also for geodetic net adjust-
ments.

The computation of redundancy numbers causes organizational and economic problems (e.g. computer
storage is limited, costs for computing time...), and so in practice we have to choose between
two alternatives: to invest time and money in the program to compute the redundancy numbers

or to optimize the measurements and cobservation design.

5. CONCLUSION

As shown above the ordinary Least-Squares-Adjustment can be made insensitive (robust) against
gross errors by means of weight functions and can thus be used to identify and eliminate out-
liers. After such robust adjustment automatically the weight of the remaining observations will
be set to their a-priori-weight, whilst the weight for outliers is set to zero. With such weights
the final Least-Squares-Adjustment will give the strict Least-Squares-Solutions. However, the
choice of parameters for the weight functions and the number of iteration steps in the robust
adjustment is still problematic.

From a computer program for robust adjustment we get only preliminary decisions, for the time
being. The final decision, to accept the results of the automatic gross error detection, is
still to be made by the operator.

The method proposed above describes the stage reached in the middle of 1983 and has been inte-
grated and further developed in the block adjustment program PAT-M43 without explicit computa-
tion of redundancy numbers by H. Klein at the Photogrammetric Institute in Stuttgart (Klein H.,
Forstner W., 1984). First results have been demonstrated in fall 1983 at the 39th Photogrammetric
Week in Stuttgart (Klein H., 1983), moreover Klein H. and Forstner W. submitted new results as

a Presented Paper at the XVth International Congress for Photogrammetry and Remote Sensing in

Rio de Janeiro.
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