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REALIZATION OF AUTOMATIC ERROR DETECTION IN THE
BLOCK ADJUSTMENT PROGRAM PAT-M43 USING ROBUST ESTIMATORS

Hermann Klein and Wolfgang Forstner

Abstract: The detection of outliers can be automated using robust estimators. The principle is to
jnterpret the residuals vj of the observations after each iteration as errors in order to calcu-
late new weights based on a weight function p(vj). The new weights pj = p(v4) are then used in the
following iteration step.

The paper reports on the realization of this error detection strategy in PAT-M43. Main topic is
the extensian of the method. especially the choice of a proper weight function, the iteration
sequence and the stopping rule. The significant facilitation in handling the program is explained.

1. The original pregram:

The computer program PAT-M43 performs a blockadjustment by independent photogrammetric models.

This approach implies a spatial similarity transformation for each model. The adjustment is based
on a least squares solution. The nonlinear observational equations are linearized with respect to
the orientation parameters. Because of computational economy the program jterates sequential hori-
zontal and vertical adjustments, applying 4-parameter and 3-parameter transformations, respective-
ly. For each iteration the partially reduced normal equations that contain only the unknown orien-
tation paremeters are formed directly from the model and control coordinates and are solved by a
modified Cholesky method (Ackermann et. al. , 1970). An extension allows the combined adjustment
of photogrammetric models with APR and/or statoscope data, including photogrammetric height measure-
ments of shorelines of lakes (Ackermann et. al. 1972).

2. Manual data cleaning:

One of the main problems of practical blockadjustment is the detection and Tocation of outliers.
Dependent on the number and distribution of the observations, errors show up only partly in the
residuals of the corresponding observations, the other parts falsify the absolute orientation of
the photogrammetric models (Forstner, 1978). The mutual interference of outliers, especially of
different size, is a further handicap. For that reason several adjustments for a step by step
lTocation and elimination of outliers in accordance with the size of the errors, and some further
adjustments in order to avoid wrong decisions are necessary. Nevertheless the quality of manual
data cleaning is sufficiently good and comparable with most of the more sophisticated procedures
(Forstner, 1982), but in general it requires a great deal of time by fully qualified persons.
Thus the main argument of the development of an automatic procedure has been: to shorten the pro-
cessing time needed by persons in charge of blockadjustment.

3. From least squares to robust adjustment:

The above mentioned problems which arise in the adjustment of data with gross errors are not a
specific attribute of the manual data cleaning procedure, but a bad point of the method of least
squares. Applying a constant weight p = const for each observation the influence function (first
derivative of the minimum function by the residual) shows, that the influence of a defective ob-
servation onto the result of the adjustment is directly proportional to the size of the error.
Thus as a matter of fact the method of least squares is applicable for errorfree data only and
unsuited for automatic error detection procedures.
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Fig. 1. Least squares: minimum function, influence function
and weight function

Logically erroneous observations have to be handled with reduced weights and can not be treated

with the same weights as errorfree data. Al1 the observations must be introduced into the adjust-
ment with weights chosen in correspondence with their errors. The problem of locating gross errors
js therefore identical with the determination of proper weights for the observations.

An alternative to least squares is the minimum norm method (Huber, 1981). Thereby the weights of
the observations are progressively determined in an jterative process. After each iteration step
new weights for the observations are calculated as a function of the residuals with P(v) =L The
influence function shows, that after convergency of the procedure the influence of all the|V
observations onto the result is equal. Observations with gross errors have the same influence onto
the result as errorfree data. This is better than with least squares but still not sufficient.

Miv)=M Iiv)=sign(v) P(v)= 1'1—1
v

—
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Fig. 2. Minimum Norm: minimum function, influence function
and weight function

An adjustment procedure which uses weight functions for complete elimination of the influence of
gross errors is the so-called method of robust estimators (robust against the influence of gross
errors) (Krarup, 1980; Kubik, 1984). After convergency of the iterative process proper weights are
determined for all observations and erroneous data will get weights approximately equal to zero
and thus will have no influence at all onto the result of the adjustment. Their residuals will
show the true errors. The method of robust estimators can be interpreted as an a posteriori esti-
mation of the variances. Many simple weight functions can be found which meet the conditions of
robust estimators, but most of them cover only a small range of gross errors and will fail with
the variety of gross errors occuring in practical cases. The reason for the failure in these cases
is the assumption of linearity by the robust estimators (Huber, 1981).
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4. Weight function for PAT-M43:

Thus, a lot of research was necessary to find a weight function and to develop a procedure which
covers the wide range of gross errors, their multiple combinations and the varying geometry of
photogrammetric blocks (Werner, 1984). Because of their effectiveness the following hyperbolic
weight function was chosen for the blockadjustment program PAT-M43:

P =P F (v 0,0 Q)

. 1
1+(a;- v, ])?

in which:
1 Py
oA s — (2)
N R N R L
d=354+—52 (3)
81 + Q*

o

Q= ——— (4)
a priori

Vi= residual of observation i
Pi= a priori weight of observation i

ri= local redundancy of observation i

8v,= estimated sigma of the residual Vs
i

Gg = estimated sigma-naught

worth mentioning are two attributes of the weight function expanding the range of gross errors
locatable with this function.

The first is the dependence on Q (see formula 3 and 4). At the start of the iteration process the
value of Q is relatively bigand it will become smaller with convergency. At the end of the pro-
cedure Q will reach approximately the value one. Thus the curve of the weight function is flat in
the beginning and will become steeper and steeper with the disappearing influence of the gross
errors and the final orientation of the models. This attribute of the weight function allows the
correction of wrong decisions caused by false O-approximations of the residuals at the beginning
and makes it easier to distinguish between errorfree and erroneous observations at the end of the
iteration process.

The second attribute is the dependence on the estimated standard deviation of the particular resi-
dual. &v; (see formula 2). Even with the simplification of using the value one as local redundan-
cy for all the observations this feature allows the determination of small gross errors in the cri-
tical range of localization.

Without any further modifications the localization of locatable gross errors up to 50 - oy causes
no problems, even with geometrically very weak configurations, as long as there are still error-
free redundant observations.
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Fig. 3. PAT-M43: weight function Fig. 4. PAT-M43: influence function

with Pi=1;ri=1;° =1 and Q=1;3;5;10;50

a priori

5. New structure of the program:

If no initial values of the orientation parameters are available the program begins with a least
squares horizontal adjustment that does not require approximate values. The resulting transformed
model coordinates enter into a vertical least squares adjustment using a shift in z only. Thus

big gross errors in height do not disturb the orientation of the models too much.

After these first two iteration steps initial 0-approximations for the residuals are calculated,
needed to start consecutive robust iteration steps. Robust estimators can relatively easy be re-
alized using the least squares algorithm and modifying the weights after each iteration step by
means of the weight function. Robust iteration steps are repeated until sufficient convergence is
reached. The convergence is quite good but highly correlated to the number and the size of gross
errors and to the geometric stability of the block configuration. Thus the number of iteration
steps may differ from 6 to 20. If the change of 0% between two iteration steps becomes less than
2. 3(32) in planimetry or height after a corresponding iteration step the final elimination of
erroneous observations is performed. A1l observations being used in that iterationstep and getting
F(Vi’aVi’Q)< 0.01 {see formula 1) will be marked as erroneous observations and will get an infini-
tely small weight. The others receive their original a priori weight. Some Teast squares iteration
steps complete the procedure to reach the final result.

Treating errorfree data in a least squares adjustment the favourable sequence of iteration steps

is a consecutive alteration between planimetry and height. Handling erroneous data the succession
of iteration steps depends on the existing gross errors. That means the succession is data depen-
dent and therefore must be directed by the program itself. The robust iteration steps always begin
with horizontal adjustments in order to reduce the influence of the very big gross errors in plani-
metry because big gross errors in the planimetric coordinates would disturb the levelling of the
models completely. Due to the same effect the first robust iteration step in height applies only

a shift in z. The sequence of all further iteration steps is chosen properly in order to keep the
reduced influence of gross errors in planimetry and height approximately on the same level because
of the mutual interference of erroneous data.
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6. Classification of gross errors:

Regarding the different effects of gross errors related to their size we can group them into 3
different classes:

1. small gross errors
2. medium-size gross errors
3. large gross errors

The classification bounds are not fixed, they depend on the geometry and may vary for different
photogrammetric blocks.

A1l gross errors greater than 4.c and less than 50.c can be designated as small gross errors.

They have no significant influence onto the orientation of the models and do not disturb the do-
main of linearity of the adjustment. Gross errors of the stochastical model and systematic errors
are not taken into account but can be considered as small gross errors. Errors less than 4.c are
integrated with the random errors.

A1l errors between 50-0 and 2-3 base . lengths belong to the medium-size gross errors. They have

no big influence onto the geometry of the photogrammetric block and don't disturb the convergence
of the adjustment but they are not within the range of the linearization and the solution may tend
to a different O-point. Errors bigger than 3 base lengths are named large gross errors. They change
the geometry of the block severely and cause poor convergence or even divergence. Especially for
blocks with bad geometry the adjustment must be stopped before reaching the point of convergence.

7. Location of small gross errors:

The location of small gross errors poses no problems for the robust adjustment with the chosen
weight function. Even small gross errors at the Timit of possible location are detected as long

as the observations are sufficiently well distributed within the models.

Only for really bad distributions the consideration of the local redundancy (see formula 2)
would improve the effectiveness of the procedure. The check for the inherent 1imit of localization
can be performed only with artificial data. Example 1 shows that the introduced errors greater than
the Tower limit of 50 are Tocated without any wrong decision. This lower limit is even better than
the theoretical expectation for the statistical test (R. Schroth, 1980).

Example 2 shows a practical photogrammetric block and is demonstrating the effectiveness of the
robust estimators. At first data cleaning has been performed manually and the cleaned data have
been submitted to the automatic procedure. Although the residuals after the manual procedure did
not indicate remaining gross errors, the automatic procedure located further ones.

8. Modifications of the procedure with respect to medium-size and large gross errors:

Medium-size gross errors and all larger gross errors do not belong to any normal distribution

of observations, they are independent from the a priori weights introduced into the adjustment.
Thus as long as large gross errors have still an influence onto the adjustment all photogrammet-
ric observations are treated with the starting weight 1, used as a priori weight in the weight
function. This starting weight tends to the introduced specific a priori weight in dependency on
the value of Q by a weight function. The same is true for all non-photogrammetric observations,
but for them the starting weight 1/100 is used. The weight function is as follows:
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P

Weight function for modified a priori weights:

SW
- - 37

P

in which: -+ + Q

20
SW = starting weight

Fig. 5. Modification of a priori weights:
a priori weight with SW=1; Pi=0.1

modified a priori weight

.i

The ratio of the two starting weights has the effect to reduce the influence of gross errors of
photogrammetric observations always a little earlier than for control. This supports the location
of gross errors at control points in case of weak control point distributions.

As long as there is no bad accumulation of medium-size gross errors in relation to the geometry
their location is no problem., But there are two effects to be avoided:

The bigger the gross errors the more falsified are the 0-approximations of the residuals. Some-
times this results in so-called "swimming" models. By means of false O-approximations the weights
for all the observations of a model will be reduced too much in spite of a flat weight function
and the model will not be able to get oriented. Nevertheless the calculated weights point to the
biggest gross errors.

An other effect is, that after location of the medium-size gross errors the adjustment approaches
a different O-point and the Tocation of the small gross errors will not be correct. The pre-
elimination of large and medium-size gross errors will solve this problem. As soon as the value
of F (V1’8v1’o) reaches a certain lower 1imit the corresponding observation will get the mini-
mum weight for elimination, all other observations receive their a priori weights to start a new
robust adjustment. The lower Timit of the weight function for preelimination starts with 10~18 and
is increased for each iteration step by a factor 10 up to the value 1079. This modification results
in a step by step elimination of all large errors down to gross errors of approximately 50 - o.
Thus "swimming" models will be reincluded into the block and linearity for the final elimination

of small gross errors in provided.

Large gross errors may disturb the geometry of the block completely. Already the O-approximations
of the residuals after the starting least squares iteration are false to the extent that the
point of convergence will not be reached. Therefore large gross errors have to be introduced with
already reduced weights into the starting least squares iteration step. The problem can be solved
by calculating a center point for each model and the distances to this point for all observations.
The ratio of distance and mean distance is used in order to reduce weights by a weight function.

The coordinates of the center point are the arithmetic mean of the coordinates of observations, as
long as there are more than 5 observations, otherwise the median is used. The same is true for the
mean distance, but the median is used already for 20 and Tess observations. The calculations are
done seperately for planimetry and height. The weight functions used are as follows:

. ) ~ . 256
planimetry: P = Pi TEE TR

height:
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in which:
Pi = a priori weight of observation i
Ri = Di/D
Di = distance of observation i from center point
D = mean distance
P P
/
P1 Pi
> —+—» R ' s - R
5 ! 1 5 !
Fig. 6. Modification of weights for Fig. 7. Modification of weights for
the starting least squares the starting Teast squares
planimetric iteration step height jteration step

The effectiveness of the modifications related to medium size and large gross errors is shown
in Example 3. With the relatively poor geometry the gross error of three base lengths at point
10201 would not be locatable in planimetry without the reduction of the weight in the first least
squares iteration step.

9. Reinsertion of observations:

In two cases it is required to reinsert already eliminated observations. Due to falsified
O-approximations it may happen that an observation is wrongly eliminated. After orientation of the
model the residuals of this observation will become small and a reinsertion is advisable.

Secondly the result of a Teast squares adjustment differs from the result of an adjustment with
robust estimators in the range of 1-2¢. After the final elimination of the small gross errors at
the end of the robust adjustment some iteration steps with least squares are performed and small
gross errors just at the Timit of localization will tend to move to the class of random errors in
the least squares adjustment and thus should be reinserted.

Therefore the weight function (formula 1) is used in the final least squares iteration steps to
check for reinsertion of eliminated observations.

During the whole procedure of adjustment, as soon as the value of F(vi,EVi,Q) becomes larger than
the value 0.01, used for elimination, an already eliminated observation will be reinserted in
order to stabilize the geometry of the block and to contribute to a final result of adjustment.

10. Conclusion:

The above described procedure of automatic gross error localization is a specific development
for the blockadjustment by the method of independent models and is not transferable to other
problems without modifications.

The procedure covers the full range of occuring gross errors from the small ones, just at the

Timit of localization, up to the big ones with several base lengths and shows the power of robust
estimators.
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When the worst comes to the worst the procedure results in the elimination of a complete model or
in the elimination of observations up to the point where no redundancy is remaining in a model.
Then the user has to analyse the observations of the specific model and to take a decision.

In most cases the result of the procedure will be only a proposal, although a very good one, and
the person in charge of the project has to judge the proposal and to decide about the final cor-
rections of the gross errors.

The program is in an operational stage and the automatic error detection procedure is easy to
handle. No parameters with respect to the procedure have to be changed by the operator, except
for the decision whether the adjustment shall be performed with or without automatic error de-
tection.
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EXAMPLE 1:

AR RAR RN

EXTRACT FROM PRINTOUT

ARTIFICIAL BLOCK WITH 32 MODELS
4 STRIPS; ~'5 POINTS PER MODEL

20X STIDELAP
SCALE= 1/10000
SIGMA= 10 MICRON
MODELS IN MICRON
CINTROL IN METER

END OF ERROR DETESCTIIN In ELEVATION

SIGMA REACHED = 3.6602
MODEL 101 POINT
MODEL 401 POINT
MODEL 192 POINT
MODEL 102 POINT
MODEL 297 POINT
MODEL 208 POINT
MODEL 308 POINT
MODEL L0g POINT
END OF ERROR DITZCTION IN PLANIMETRY
SIGMA REACHED = 8.8794
M0DEL 101 POINT
MODEL 491 POINT
MODEL 192 POINT
MODEL 102 POINT
MODEL 207 POINT
40DEL 208 POINT
M0DEL 308 20147
MUDEL 403 POINT

101035
802303
10203
20203
33701
50903
S0903
90903

10123
BO203
10203
20203
30701
50703
50993
90903

SUPERPOSED GROSS ERRORS

“y
TP
TP
TP
TP
HY
HV
HV

A R I

Hy
TP
Te
TP
TP
HY
Hy
qy

- PR SRR D -

MODEL-NO.

101
102
107
304
402
404
407
407
HC
HC
HC
HC
vC
ve
ve
ve

VXY=
VXY=
VXY=
VXY=

VXY=

TRAMNSFORMED PHOTOGRAMMETRIC MODEL COORDINATES AND RESIDUALS

Y 22 2R A Ry X X R R PR R R AL RS R SRR 2R RS AL A

¢ IN UNITS OF THE TERRAIN SYSTEM 2

- MODEL

10100
10101
10103
10200
10201
10203
20101
20201
20203
30101
30201

MODEL

40100
40200
70101
70201
_80101
80201
30203
90101
90201

HMODEL

10200
10201
10203
10300
10301
20201
20203
20301
30201
30301

MODEL

40800
40900
70301
70803
70901
80801
80901
90501
90901
90903

NUMBER 101
-0.210 899,974
0.083 ~0.092
0.083 -0.092
900.252 899.983
900.042 -0.028
900,042 -0.02%
0.044 £99.990
900,184 900,180
900.938 900.180
-0.057 1800.031
900,113 1799.923
NUMBER 401
-0.165 6300.204
899.850 6299.856
-0.137 5400.061
899,356 5400.133
-0,2446 6299.994
8R9. 5826 6300.090
899,526 6300.090
-0.029 7200.133
899.822 7200.103%
NUNBER 102
900.178 899.954
900,087 0.024
900,087 -0.976
1800.161 900.038
1800.117 0.103
900,289 899,987
900. 289 899.987
1800.147 899.834
900.028 1800.073
1300.119 1799.971
NUMBER 408
6299,53° 6299.004
7199.497 6299.810
6300.109 5399.757
6300.103 5399.757
7209.105 5399.878
6300,18° 6299.994
720).172 0299.611
€300,195 7199.389
7200.136 7199.923
7200.136 7199.988

1500.073
=-0.040
=-0.040

1500.079

0.230
0.230
0.03s
0.280
-0.514
-0.027
0.07¢

1499.734
1499.855
0.069
~0.156
~0.137
0.027
0.027
-0.054
=0.234

1500.127
0.246
1.246

1500.120

-0.022
0.009
0.069
0.412
0.196
0.034

1499.887
1500.097
-0.070
-0.070
0.023
-0.238
0.050
~0.429
-0.071

=0.071

pC
HV
HV
PC
T
T*
sp
TP
Te
VE
TP

PC
PC
VE
TP
sP
TP
TP
HY
TP

5¢
TP
TP
PC
TP
TP
TP
TP
TP
TP

pPC
pPC
TP
TP
VE
TP
SP
TP
HY
HY

P ENNNNRNNNNR PO =R =N - SN N= PR ==

B s B L R ol

=> HV 0/ 9

-> sp 17 1

sP 17 1

=> sP 17 1

=> SP 17 1

-> SP 1/ 1

~> HY 07 0

IN MICRON RESP. METER:
POINT-NO. bX DY [ 2]
20203 80.000 0.000 ~-80.000
12233 0.009 -100.000 100.000
30803 30.000 0.000 30,000
50503 0.000 ~-30.000 -30.000
80203 =70.000 70.000 100,000
83503 -40.,000 0.000 -40.000
83703 0.000 50.000 50.000
70803 30.000 0.000 30.00)
10103 -1.000 0.000
52103 -0.300 0.000
50993 0.000 -0.500
90903 0.500 0.500
10133 -1.009
50103 ~-0.300
50903 0.500
90993 0.509
vi= J.95¢ ZLIMINATED IN HEIGHT
vi= D469 ELIMINATED IN HEIGHT
vis= 3.799 ELIMINATZD IN HEIGHT
vi= 2.392 ELIMINATCD IN HEIGHT
vi= J.e17 SELIMINATZD IN KEIGHT
vi= Ja467 ELIMINATEID IN WEIGHT
vi= Je451 SLIMINATED IN MEIGHT
Vi= J.521 ELIMINATID IN HEIGHT
1.052 ELIMINATED IN PLANIMETY
J.38 ELIMINATZD IN PLANIMFTRY
0.903 SLIMINATZID IN PLANIMETRY
D.686 ELIMINATED IN PLANIMETRY
Vi Jeb21 RE-INSERTED IMN HTISHT
vi= J.470 RE-INSERTED IN HEIGHT
vi 0.454 RE-INSERTED IN HIIGHT
Ge?702 ELIMINATED IN PLANIMZTRY
SC= 99.995699
0
-0.061 0.023 2.737 C o s«
=1.052+* 0.029« =2.%53« 30
~G.0237 -0.017 0.024 [ A
0.022 0.020 0.00¢ 0 o« & -
0
0
0.0351 =0.097 =2.109 C » -
Q
0.940 -0.011 =J.022 0 . . .
-0.071 0.058 J [
sC=  100.00412
0
=0e334 0.144 J.391 G . . .
~0.054 0.030 -0.005 C s e .
0.056 0.021 ~0.203 C . . .
o]
~0.217 -0.054 =Je135 e . . .
~0.735* 0.593+ 0730 3¢
0.9C7 =-0.042 0.319 0 .« .« -
0.208 0.045 0.033 C ...
5= 100.00261
0.037 0.017 -0.024% C .« .
~0.022 -0.026 -3.00? 0 « « &
=0.045* 0.946» -1.017 30
-0.077 -0.093 -0.00% 0 .+ « .
0.033 ~0.006 0.079 0 . ..
-0.051 0.096 0.109 0 .. .
0.699 0.193» -0.583~ 30
0.007 0.028 -0.182 0 . ..
0.013 =0.092 -0.059 0 ...
0,019 0.000 0.093 0 « o
SC= 99.99940
0142 0.147 -0.020 0 ...
¢
-0.013 0.036 =-0.058 0 .« « @
0.062 0.036 0.017 0 ...
0.013 -0.065 0.030 0 ...
=-0.068 -0.022 -0.019 0 ...
0
0.027 0.008 0.021 ...
~0.022 0.007 0.029 0 . . .
0.473 0.509+ 0.537+ 30



EXAMPLE 2:
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EXTRACT FROM PRINTOUT:
PRACTICAL BLOCK WITH 32 MODELS
6 STRIPS; ~18 POINTS PER MODEL
SCALE= 1/28000; 20X SIDELAP
SIGMA PLANIMETRY = 5.6 MICRON
SIGMA HEIGHT = 9.3 MICRON
MODELS IN 1/100 MM

CONTROL IN METER

ADJUSTMENT WITH AUTOMATIC cRROR DETECTION AFTER

ITERATION STEP Q..4..VERTICAL ADJUSTMENT

ITERATION STEP FOR ERROR DETECTION

END OF ERROR DETECTION IN ELEVATION
SIGMA REACHED = 0.5511

VERTICAL CONTROL POINT 15401
VERTICAL CONTROL POINT 16202
VERTICAL CONTROL POINT 21101
VERTICAL CONTROL POINT 21201
VERTICAL CONTROL POINT 31201
VERTICAL CONTROL POINT 36201
MODEL 112111 POINT 6211
MODEL 212211 POINT 16111
MODEL 212211 POINT 26111
MODEL 212211 POINT 26112
MODEL 212211 POINT 26211
MODEL 212211 POINT 26212
MODEL 312311 POINT 36212
M0DeL 2112180 PJINT 21001
MODEL 41141C POINT 41000
MODEL 4114610 POINT 46101
MODEL 310309 POINT 26011
MODEL 410409 POINT 3080¢
MODEL 109108 POINT 10309
MODEL 107108 POINT 10900
MODEL 207206 POINT 20612
MODEL 306305 POINT 35611

ITERATION STEP 10.....HORIZONTAL ADJUSTHENT

ITERATION STEP FOR ERROR DETECTION

END OF ERROR DETECTION IN PLANIMETRY

SIGMA REACHED = 0.3618

HORIZONTAL CONTROL POINT 46101
VERTICAL CONTROL POINT 31201
MODEL 213212 POINT 16311
MODEL 213212 POINT 16312
MODEL 112111 POINT 6211
MODEL 11211 POINT 16101
MODEL 212211 POINT 16111
MODEL 212211 POINT 16201
MODEL 212211 POINT 16211
MODEL 212211 POINT 16212
MODEL 212211 POINT 26111
MODEL 212211 POINT 26112
MODEL 212211 POINT 26211
MODEL 212211 POINT 26212
MODEL 212211 POINT 26212
MODEL 312311 POINT 36212
MODEL 211216 POINT 21001
MODEL 411410 POINT 46101
MODEL 310309 POINT 26011
MODEL 310306 POINT 26011
MODEL 319309 POINT 26012
MODEL 410409 POINT 30802
MODEL 308307 POINT 25711
MODEL 207206 POINT 20612
MODEL 207206 POINT 25711
MODEL 207206 POINT 25712
MODEL 304305 POINT 35611

ITERATION STE® 114eas VERTICAL ADJUSTMENT

HORIZONTAL CONTROL POINT 46101
VERTICAL CONTROL POINT 21101
MODEL 112111 POINT 16101
MODEL 212211 POINT 16201
MODEL 212211 POINT 16211
MODEL 21221 POINT 16212
MODEL 212211 POINT 26212
MODEL 308307 POINT 25711

ITERATION STEP 12-.-..HORIZONTAL ADJUSTHEIT

VERTICAL CONTROL POQINT 15401
MODEL 207206 POINT 25711
MODEL 207206 POINT 25712
MODEL 310309 POINT 26011
MODEL 310309 POINT 26012
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MANUAL DATA CLEANING
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TP
TP
TP
TP
TP
TP
TP
TP
HV
HO
TP
TP
TP
HY
TP
TP
TP
TP
TP

HO
HV
HY
HY
TP
TP
TP
TP

KY
TP
TP
TP
TP

SN SENONSSSESSPNNNSNaSNN

SWENE SN PSEEPWNETEINNNNESN

SEPPUN=SN

sV

VXY=

VXY=
VXY=

VXY=

VXY=
VXY=

VXY=

VXY=
VXY=
VXY=

VXY=

VXY=
VXY=

VXY=

VXY=
vXy=

VXY=

VXY=
vXy=
vXy=
VY=
VXY=
yXy=

yXys=
yXy=
yXys=
XY=

1.865

1.709
1.658

2.911

1.511
1.648

0.715

0.793
0.803
2.808

0.760

0.984
D0.362

0.342

0.922
0.990

0.933

0.719
0.89¢4
3.736
0.309
0.762
0.845

0.556
0.611
0.865
0.672

vi

Vi

vz

vi=
vi=
vi=
vi=

vi=
vi=

vi
vZ

vz

vz

vz

Vi

vi

£

0.55¢4
0.405
0.544
1.496
0.435
0.921
0.881
0.852
0.799
1.008
0.844
1.074
0.397
0.863

0.945

0.850
0.382

0.786
0.905

0.445

d.895

0.388

0.942
1.2038
0.329
0.962
0.899
04565
0.955
04563
0.385

0.873

0.908

0.348

0.521

ELIMINATED

ELIMINATZD

ELIMINATED

ELIMINATED

ELIMINATED

ELIMINATED

ELIMINATZD IN HEIGHT
ELIMINATED IN HEIGHT
ELIMINATED IN HEIGHT
ELIMINATED IN HEIGHT
ELIMINATED IN HEIGHT
ELIMINATED IN HEIGHT
ELTMINATED IN HEIGHT
ELIMINATED IN HEIGHT
ELIMINATED IN PLANTMETRY
ELIMINATED IN HEIGHT
ELIMINATED IN HEIGHT
ELIMINATED IN HEIGHT
ELIMINATED IN PLANIMETRY
ELIMINATED IN PLANIMETRY
ELIMINATED IN HEIGHT
ELIMINATED IN HEIGHT

ELIMINATED

RE-INSERTED

SLIMINATED IN SLANIMETRY
ELIMINATED IN PLANIMETRY
RE-INSZRTED IN HZIIGHT
ELIMINATED IN PLANIMRTRY
RE-INSERTED IN HIIGHT
SLIMINATED IN PLANIMETRY
ELIMINATED IN PLANIMZITRY
ELIMINATED IN PLANIMETRY
RE-INSERTED IN HEIGHT
RE=INSERTZD IN HFIGMT
RE-INSERTED IN HZIGMT
RE-INSZRTED IN HEISHT
SLIMINATED IN PLANIMETQY
RE=INSERTZD IN HEIGHT
RE-INSZRTED IN HEZIGHT
RE-INSERTZD IN HEIGHT
RE-INSERTED IN HZIGHT
ELIMINATED IN SLANIMETRY,
ELIMINATED IN PLANIMETRY
RE-INSZRTED IN HZIGHT
ELIMINATED IN PLANIMETRY
RE-INSERTED IN MEIGHT
ELIMINATED IN PLANIMETRY
ELIMINATZD IN PLANIMETRY
RE-INSERTED IN HEIGHT

RE-INSERTED

RE-INSERTED

RE-INSERTED IN PLANIMETRY
RE-INSERTED IN PLANIMETRY
RE-INSERTED IN PLANIMETRY
RE=INSERTED IN PLANIMETRY
RE-INSERTED IN PLANTMETRY
RE-INSERTED IN PLANIMETRY

RE-INSERTED

RE-INSZRTED IN PLANIMETRY
RE-INSERTED IN PLANIMETRY
RE-INSERTED IN PLANIMETRY
RE~-INSERTED IN PLANIMETRY
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TRANSFORMED PHOTOGRAMMETRIC MODEL CCORDINATES AND RESIDUALS

AR ARA RN RN A AR NN AR AR R RARNARAN AR AR AR AN AN RR AR TR NN AR

( IN UNITS OF THE TERRAIN SYSTEM )

MODEL

16201
16202
16211
10212
16311
156312
21200
21201
21211
21212
<1300
21311
21212
26211
26212
20311
co312
MODEL

31161
36001
30011
36012
360101
36111
36112
30113
36116
41000
41001
41011
«1012
41100
41111
41112
46011
46012
46101
46131
66132

MODEL

57u1
5702
5301
5%11
5812
5911
5912
10800
10341
10811
10900
10901
10911
153801
15811
15812
15911
15912

NUMBER

19785.406
20170.993
20987.462
20957.464
18519.591
184094311
21100.470
19944,651
21052.15¢0
21922.216
18512.329
18457.043
18427.15¢4
21362,232
21032.23u
13507.453
1864770040
NUYBER

25625.502

S0dv.497
260116,967
25v4d0.920
23353.134
23503.741
23473.458
23570.230

3557.386
26066.920
2643522.1585
26011.589
25981.542
23577.7653
23505.941
23477.258
260454234
26043.79°
23957.223
23790.150
23709.4430

NUMBER

31701.875
312244845
30039.372
30992.103
30962.101
285824380
2¢553.043
31120.157
29397.094
30977.247
20 607.830
28475.439
23331.137
29374 .312
31031.53¢
31001.906
284692.602
2¢495.158

213212

41662.499
43717.534
41518%.197
41519,737
41482.567
4144824252
43821.375
46404.112
43987.740
4398%.1272
43865.191
4399%.038
44000.247
46692.155
46692.295
40547.861
£654°.505
411410

50895.9956
521442307
51446.7119
51446,.519
53562.629
51335.075
51337.630
51613.751
51641.645
53965.705
562444214
54037.73%
54033.412
53990.041
54016.470
564023.282
36582.4672
56612.918
56903.700
56277.211
56324.343

109108

36832.744
38422.50°
36334.185
36477.780
36479.483
36477.794
36480.071
38970.670
39347.598
39028.09%
38919.4818
40359.040
38379.800
41539.893
41533.327
41537.827
41207.073
41230.860

VERTICAL CONTROL POINTS

5701

5702

5801

5901
10401
10501
10901
10902
15703
15301
15901
16102
16201
16202
20501
20901
21001
21101
21201
25501
25801
35901
36001
36201
40501
40502
40601

657.137
658.197
650.274
650.6838
629.558
632.15¢2
4951.772
633.600
624,532
625.9109
4952.950
650.887
6504563
600.110
631.323
621.3u3
021.239

597.317
606.611
692,639
602.578
$70.693
592,963
503,553
598.551
598,450
5040.819
545,516
591.373
590.0659
5039.73¢4
570.090
570.016
547.764
547.338
608.497
597.472
601.201

583.670
581.233
537.957
579.263
580.450
538.340
589.198
4989.630
592,439
569.5133
49%6.889
609.879
595.718
529.158
561.291
561.320
566.629
567 .405

583.800
581.100
538.200
602.800
548.900
592.800
609.600
583.400
587.400
589,300
578.600
623.900
657.600
658.600
572.200
592.800
588.900
629.800
635.100
553.900
609,400
587.700
606,600
577.300
541.000
565.900
372,200

Hy
HV
TP
TP
TP
TP
eC
MV
TP
TP

e

sp
sP
TP
TP
TP
TP

HV
HV
WV
T
TP
TP
TP
pe
HV
TP
pC
HV
TP
HV
TP
TP
T
T

HY
Hv
HY
HY
Hv
HV
HV
HY
Hv
HV
L1
HV
HV
HV
HV
HY
HV
HY
L1
HV
HY
RV
Hy
Hy
HY
WY
L1}

NRNTONONNRNNN =R SRS ENS S NSRS a=alN NN S NW

SR PP NRNNRNNSNINNR N NN

NN=SNENPINN=SNNSNW=S RSO 2arno N

-> TP 1/
=> TP 1/

-> PC 1/

=> PC 17 2

-> PC 1/

=> HQ 2/

=> WO 2/

~> Ko 2/

LX)

2

-
c

SC

=-0.001
-0.205
0.005
0.127
=1.079*
“1.212»
0.309
-0.016
0.004
0.015

=0.156

~0.100

0.111

0.217
S¢

=-0.079
0.065
0.173
0.110
-0.066
-0.170
=-0.125
-0.218
-0.158
~0.097*
0.135
0,024
0.037
=-0.9091
0.043
-0.020
0.010
-0.001
0.119
0.021
0.097

SC

0.003
-0.033
2.065
0.043
0.0¢?
-J.138
=0.9267
0.255«
03.034
J.049
24513
~0.795
-0.095
0.296
=0.7353
=0.04)
D0.106
0.061

3.53452

-0.076
0.001

=0.157
0,037
0.266»
0.253»
0.113

-0.013
0.083
0.049

0.014
-0.025

0.055

0.033
3446565

-0.024
0.123
0.220
0.054

~0.102
0.029
0.057

-0.338

=-0.013
1.903~

-0.030
0.234
0.187

=0.046

~0.029

-0.081
0.024

=0.062

-0.404
0.112
0.093

3.51248

0.252
0.031
0.080
-0.024
~-0.103
-0.235
-0.136
€.045%
0.009¢
0.169
0.722»
0.249
0.02¢4
~0.122
~0.049
~0.294
-0.057
c.079

0.295
-0.148
-0.087
-0.156

0.018
=0.152
-0.002
-0.112

0.1%4

0.060

~N N

0000000000000 0O0OO00

0.099
0.095
-0.100
=0.003

0.023
~0.083
0.083
-0.072
~0.363
D.320
0.245
=0.361
0.045
0.025
=0.095
0.052
0.075
0.051
-0.066
-0.070
=0.116
0.080
O0.411
=0.128
~0.057

nN
0000000000000 000000O00QO

Ca131
-0.119
Je177
=0.126
=0.112
=0.273
0.093
-0.09¢
0.248
J.108
3.011 Py
-0.328
. 261
0.G95
=0.363
0.229
g.910
0.048

~

0000000000000 OOO

0.001
0.06%
~0.064
0.062
0.023
=0.062
=0.0648
=0.063
-0.015
-0.346
=0.355
0,081
-0.118
=0.551* 1
0.087
0.154
-0.008
~0.026
=1.612+ 1
~0.093
=-0.051
0.016
-0.072
=1.034» 1
-0.028
-0.038
0.064¢4

AN NN N NN NN R RN ON NN RN RN R R NN

« a8 5 s e e e o —2e s 8 o 8 s s & « s 8 8 o 8 0 o &



EXAMPLE 3:

LSS AR 2222 2

EXTRALT FROM PRINTOUT:
ARTIFICIAL 3LOCK WITH

4 STRIPS; 6 POINTS PER MODEL
SCALE= 1/10303; 20X SIDELAP
SIGHA= 10 MICRON

MODELS IN MICRON
CONTROL 1IN METER

ITERATION +HOPIZONTAL ADJUSTMENT
ITEPATION STEP FOR ERROR DETECTION
HORIZONTAL CONTROL POINT 16901
MODEL 121 POINT 10201
A0DEL G)e POINT 90701

ITSRATION 5Tz

ITERATICN STiP FOR ERRIR DETZICTI%H

VERTICAL CONTKOL POINT 10201
“10Del 1M POINT 10201
10DEL L PIINT 73?01

ITERATION STEP 10..eeaVERTICAL ADJUSTMENT

LTERATION STLP FOR ERRIR DITECTION

X2 MODELS

END OFf ERROR OTZTECTION IN ZLEVATION

SIGMA REACHED = 9.3370

M3I0EL 11 POINT 30201
4ODEL 192 POINT 1020)
M00EL 192 PoINT 20201
ITERATIOCN STEP 12¢eaee VERTICAL ADJUSTMENT
MODEL 101 POINT 302e
10DEL 1.4 PIIANT 13209
MODEL 132 PAINT 2021

HV
TP
TP

v
TP
TP

T
°C
TP

Te
2C
TP

AN

LV

LSRR

TRANSFORMED PHOTNGRAMMETRIC MODEL CCORDINATES AND 3¢

L e R e e R A 2 e S SRS A RS R RN AR 2 s

{ IN JNITS OF THE

ModEL NUMHIR

1912y ve231
1011 -Je012
1020y 9jd.7653
' 280%.707
1e 215
03054
}oi50
30201 Sud. 113
HODZL NULM5EIR
400Gy 45004155
S3700 5300,94%3
705601 43500.007
70701 539%.79»
30601 4509.043
$07u1 5399.1302
90501 4599.923
30701 7303.120

TERRAIN SYST:zM )

101

599.572
MIPREY
900.152
192¢2.127
93074057
399.761
18004024
18023.225

4Js

0269.207
§3€D.152
56407914
S4C0.07
9299.955
62997.96¢
7200.J0972
9108.9%4

1499.97s
-0.031
1430,85¢
2639.508
0. G54
=0.1¢26
=0.062
04175

1570,08v
152C.020
Oalud
0.074
04223
0,239
1°7

&2

0.
26%9,

CONTRCL POINT COJRDINATEL AND R2ESIDUALS

A A AR AN AN R IR RN IR A XA AR AR AR AN RN T A RN TN

( IN UNITS Of THR TcRRAIn SYSTEWM )
HORLZONTAL CINTRIL POINTS

10101 U033 =Jeuds

10501 3500.4s0 =0.122

10961 9109.957 1909.0G05

50101 =2.137 3a0u.061

50201 7200.012 3600.000

30101 -0.991 7199.9252

20501 599,070 72GJ.067

20901 7209.001 7199.9581

VERTICAL CONTROL POINTS

10101
10501
10201
30101
30501
30901
50101
50501
50901
70101
70501

=0.099
0.027
2700.038
-0.054
0.024
0.093
-0.018
-0.072
0.065
0.032
0.000

pC
oC
TP
TP
TP
TP

TP

L}
MV
Hv
VE
VE
VE
HV
VE
HV
VE
VE
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SUPLRPDHSED GRCSS ERRORS

IN BASELENGTH:

10EL-NO. POINT=NG, oXxy 92
101 192m 3 3
400 90701 3 3
HVC 10901 3 3
VXY= 2699.549 ELIMINATED
VXY= 2704.037 ELIMINATED IN PLANIMSTRY
VXY= 2702.264 ELIMINATED IN PLANIMETRY
vZ 2699,824 SLIMINATED
vI=  24695.110 SLIMINATED IN HEIGHTY
VZ 27C1.269 ELIMINATED IN YESIGHT
vi 3.537 ELTMINATEID IN HIIGHT
vi= Cl.832 ELIMINATED [N HEIGHY
vz 1.30% ELIMINATED IN MEIGNT
vZ 0.365 RE-INSERTED IN HEIGHT
vis J.405 RE-INSZRTZD IN HIIGHT
vi= 0.286 RE-INSERTED IN HEIGHT
SIDUALS
I E AR AR &4
sC= 1€0.005390 .
1 I
1 Da 38 2.010 1.218 [
2 -1.383 G.042 0.533 [
: => SP 17 1 =17309.3211~ =1907.243~ ~24%7.317x  °C
1 L
2 =J.714 ~C.Cug =J3.55¢% C o .
Z =Ja043 0.0351 J.G16 . .
4 J.022 -0.054 1,013 [
3= 1D00.209%3
2 =5.325 Ga159 J.5061 e e .
2 J.0:1 0.036 3.295 C o o™
4 ~0.742 0.059 -3.0%7 [
3 Je 31 =6.05¢& -0.00% C « .« .
< =J.503 0.014 -3.933 0 ...
2 =Ja69 §.025 =3.067 C o« e
Z D.1J02 -0.040 3.380¢ e ...
2 => 5P 1/ 1 =1309.235« ~1908.924~ -2599.713% 70
1 =J.3CY -3.053 2 ..
? -J. 207 0.0%Zs A
1 => 5P 1/ 1 =1913.117~ ~1908,7K3« 28
2 -0.039 -G.031 2 e
2 0.214% 0.032 2 ..
1 J.012 0.00s 2 ..
2 -0.701 0.007 -
1 =2.3C3 -0.097 P
1 -0.704 2 .
2 0.204 2 -
1 -> 5P 1/ 1 -2700.1%8+ 12
2 0.2G9 P .
4 =0.201 2 .
2 -0.007 2 -
2 0.203 2 .
4 -0.012 2 -
2 J.003 2 .
2 -0.310 4 .
4 0.907 2 .



