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DETERMINATION OF THE ADDITIVE NOISE VARIANCE IN OBSERVED AUTOREGRESSIVE
PROCESSES USING VARIANCE COMPONENT ESTIMATION TECHNIQUE

Wolfgang Forstner

Abstract: The paper discusses the determination of the variances 0; and o; in an observed
autoregressive process Y; =Tt with z. = Zak‘”i—k+ei . It is shown that approximating the
estimated Fourier power spectrum Py(u): IH(u)|202-+o; by a weighted least squares fit is iden-
tical with the variance component estimation solution in the spatial domain. The statistical and
numerical properties of the procedure are analysed showing the versatility of the approach.

1. Introductibn

1.1 Autoregressive (AR) models are widely used for describing the statistical behaviour of one-
and two-dimensional randomly varying discrete functions. Examples are time series and digital
images. This study was motivated by the application of AR-models in the analysis and prediction
of heights of topographic surfaces. Preliminary investigations (Jdckle, 1984) suggest that AR-
models are suited to describe the behaviour of the slopes or the curvature in terrain profiles.
The results of this paper may be used to derive an optimal, possibly adaptive, filter in the pre-
sence of observational errors.

1.2 The model for an AR{p)-process {stochastical variables are underscored)

+
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p
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of order p is fully descibed by the p coefficients a, and the variance 02 of the driving process
(gi) which in most cases is assumed to be white Gaussian noise. Usually only the observed process

(ﬂi)
}LL:EL"*E«L' (2)

is available, where the n; are observational errors. Then in addition to 2 and 02 the additive
noise variance 0; is unknown. For a reconstruction of the sequence (xi) from the observed se-
quence (3¢) » €. g. by using a Wiener Filter or equivalenty by least squares techniques, the
power spectra of ) and nes i. e. the parameters a, and both variances have to be known. The
standard techniques for estimating the parameters a, (cf. e.g. Box/Jenkins, 1976) however neg-
lect the effect of the observational noise n; Or assume both variances or at least o; to be

known (cf. e.g. Yum and Park 1983). A joint estimation of all parameters is desirable.

According to an idea of R. L. Kashyap, which became known to the author after finishing the manus-
kript, the variances can be derived from a nonlinear equation system (Kashyap and Rao 1976, ch.zh)
which is based on the representation of an observed AR-process by an autoregressive moving average
(ARMA) process. It will be of great interest to compare this approach with the following one which
in addition to the estimates of the variances also offers criteria for their evaluation. The
estimation, however, needs not necessarily be accomplished in one step but may be achieved in an
iterative manner, by alternatively estimating the process coefficients a, and the variances c; and
0;.
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1.3 This paper discusses the determination of the variances of the driving and the observation
process assuming the process coefficients to be known. The procedure could be part of an itera-
tive algorithm for the joint estimation of all unknowns or used in cases where the process
coefficients are known from experience. As the transfer function #(u) of the AR-process only
depends on the process parameters, the proposed estimation procedure will immediately yield an
estimate for the signal to noise ratio of the observed signal and allows a proper reconstruction
of the process (fi)'

1.4 We will first derive estimates for the variances 02 and 0; based on the power spectrum of
the observed process Y and then show that the resulting equation system is identical to that
obtained by a set up in the spatial domain using variance component estimation technique and
assuming the process (zi) to be periodic. The 3rd section analyses the estimability or determi-
nability and the identifiability or discernability of the variances for a doubly integrated white
noise process which is already in use for height interpolation in photogrammetry (Ebner 1979).
The 4th section discusses the numerical effort for the variance component estimation and the ver-
satility of the approach.

2. Estimation of the variances of the driving and the observing process

2.1 The Power Spectrum of Observed AR-Processes

The power spectrum of the AR-process eq. (1) only depends on the parameters a, and the variance
o; of the driving process (e.) . It is given by (cf. e.g. Liicker (1980), p. 52)

2
o)
e

2
px(u) = 5 ' = T(u) e o, . (3)
‘1 Va R
k
k=1

With (Ei) being white noise and independent of (Ei) the power spectrum of (ai) is immediately
- - 2 2
Py(u) = Px(u) + Pn(u) = T{u) o, + 0, (4)
T(u) is the squared transfer function of the system yielding (fi) from (fd) .

The total variance [ P (u)du of the process is spread over the frequencies u and consists of
two components. As T(u) , depending on a only, is assumed to be known, each value of the power
spectrum is a linear function of the two unknown variancecomponents cz and o;.

Example 1: The non-stationary AR(2) process with a, = +2 and a,=-1 can be used to describe the
heights in a terrain profile (cf. Ebner, 1979). It is a doubly integrated white noise process.

The power spectrum of an observed profile is then given by eq.(4) using

1
T(u) = ——— (5)
16 sin® mu
The Wiener or least squares filter for estimating (xi) from (yi) is (cf. e. gq.
Castleman (1979), cf. also Link (1983)):

P (u) 1

H(u) = —= = > (6)
Px(u) + Pn(u)

1+ —5 ¢ 16 sin*my
e

and only depends on the ratio 0;/02 between the two unknown variances. We will refer to this
ratio later in conjunction with the least squares solution in the spatial domain. =
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2.2 Estimating Variance Components from the Power Spectrum Py(u)

The power spectrum P (u) may be estimated from (Ed) in various ways (cf. the review Kay/Marple,
1981) and leads to an estimate Ey(u). If the process (y.) is periodic and Gaussian By(u) reason-
ably can be estimated using a discrete Fourier transformation. Then the elements of Ey(u) are
independently (cf. Papoulis, 1965, p.368) X; distributed with variance V(Ey(u))zP;(u), as they
are derived from the normally distributed complex amplitude spectrum of (Ed)' This leads to the
following variance component model:

5 _ 2 2, 3 - p2
E(fy(u)) = T(u) o, +0, V(fy(u)) = Py(u) » (7)

With approximate values 02(0) and 02(0) one can now derive estimates and Qn for the variance

0
Te
factors using weighted Teast squares technique. The normal equations are

S @_ W (8a)
1 _ ,
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Y Y Y (8b)
2 2 4 ~
) T(u) 0,0, o, $ Z oﬁ- Ey(u)
2 2
P (u) P(u) n u P2
u y y ) i y(u)
As Py(u) is unknown but needed for determining the weights
wu) =1/ V(fy(u)) , (9)

it may be substituted by Ey(u). Then eq.(8) becomes nonlinear in the unknowns and has to be
solved iteratively (cf. Schaffrin, 1983) by setting

Q3(v+1) = G2(V) *9.(v) 5 P=e m (10)

2.3 Estimating Variance Components from the Process (yi)

The derivation in the spatial domain is more extensive than in the spectral domain. We start
from the AR-model egs. (1) and (2) and rewrite it in the form of a linear Gauss-Markov model
(GMM) :

P
0= E(gi) S +k§1ak g s Vie) = 02 i =ptl, m (11)
E(y,) = =, ; V(iy) = ofl =1, m (12)

The expectation of thée m-p prediction errors &, are zero. They can be treated as fictions obser-
vations with value ¢ and variance 02. Together with the m observed values Yy, we have 2m-p ob-
servations for the unknown x, of the AR-process, leading to a redundancy of r=m-p. In general
not all z, need to be observed, moreover they need not be observed directly, allowing irregular
gaps between the observations, or observations at arbitrary points ¢ between two grid points
t;and by,
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In this context we restrict the process y; to be periodic making a comparison with the previous
results possible. Then additional p equations in the form of eq.(11) are available extending

the range of the parameter Z (£ =1,m) and thus increasing the redundancy to r=m. The complete
GMM then reads as:

2
E(L) = Az ; V(L) =C= § ¢.4, (13)
- - i=1 * *
with
e = 2
1= (—) s (&) A = Al ; Q1 = c’eI 0 ; Q. = 0 0
- \g/ y=ly) I 0 0 2 \o &r
n
and i -
-1
-1 Ay Ay eevenas a - 0 0
A1 - ? -% Ag eennens ?k-l ..? = oire b
ool a
M X
a; a, . a, 0.. 0 -1 .
. | 4 |
The periodicy of (yi) is reflected in the circulant matrix A, with kernel vector [-1 0..0 ak..allf.

The filtered values £ can be estimated from the normal equation system

= h  with o= o4l a4 0;2I ; h=oy (14)

v e 171 n

18>

if the variances OZ and o;, or at least the ratio o;/oz is known.

The variances however can be estimated using variance component estimation technique (Helmert
1924, Grafarend/d'Hone 1978, Koch 1979, Forstner 1979).

The variance factors ¢e and ¢n can be obtained from the equation system

56 =uw (15)
with
S=z(s..)=(tr (D@ ¢ 0@y , £ =¢,8)
v z J - te? In
ws(w) = (@ CcDe, DY), ize,

- ~1 -
p=1-4acafcra)” afc™

. . o, - e
The elements 8 in our case are (with Q =021 and Q, =02 I )

=1 =1 2
sy, = tr [(I -4 W Af ;)] (16a)
-1 7 - -1 -1
8, = tr [”lAz QllAlNle] =, (16b)
- - 2
8y, = tr [(I - W 1Q21) ] (16c)

If we now exploit the special structure of the matrices 4
matrices, we can further simplify the expressions.

N and Q> all three being circulant

With the unitarian matrix

1 —=j2ril
L gimitsn)

F=(fy) = (/E



the circulant matrices AJ

-1 _ . .
FA, F" = dzag(Au) H

-1 . -2 2 2y . . -
F N F " =diag(o |Au| +0%) us
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i, n

and ¥ can be diagonalized {cf. Zurmihl 1964, Klein 1976):

(18)

Pre- and post-multiplying the matrices ¥,4, etc. in eq.(16) with 7 and F~*= r* does not change
the values 813 but allows to write the traces as sums of the eigenvalues. With A(u) = |Au|2

this finally leads to

; Muw) o2 2
e 1
11 u -5 £
A(u)ce +0,
or
04
z e
8 = —————— =
11
" (Mu) ol + 0)”

and analogously

2 2
2 A(u)on o,
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u (A(u)oi + 05)2

-4
g
n

-2 -2.2
u (A(u)oe +0, )

- 4
A (u)Oe

)
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(19a,b)

(20a,b)

(21a,b)

The right sides of eq.(15) can be treated similarily. If we now substitute A™(u) by T(w) in

egs.

(19b), (20b) and (21b) we immediately obtain eq. (8b). The equivalence of eq.(8) and

(19)-(21) 1is not surprising as the transformation eq.(18) is identical to the discrete Fourier
transformation, which has also been used for the estimation of Py(u). But we are now able to
use both, the spatial and the spectral, version of the estimation procedure to advantage.

.

Example 2:

Figure 1 shows the graph of a terrain profile with 150 points derived from aerial

photographs of scale 1:28000 using photogrammetric measuring device (Zeiss Planicomp 100).
The precision of the operator was determined using the model eq.(13) based on the AR(2)-process

from example 1 (az =2, a,

=~1) {cf. Lindlohr, 1982). The estimated standard error o

was 0.45m .

This is ca. 0,1% of the flying height of 4300 m over the terrain and in full agreement with

photogrammetric experience. m
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3. Evaluation of the Estimated Variances

3.1 Determinability and Separability

The properties of various estimators for variance components have been analysed by Schaffrin
(1983). The estimated variances from eq.(15) are best invariant quadratic estimators with mini-
mum bias (BIQUAMBE). Though their distribution is not known, one can derive their variance
under the assumption that (gi) is Gaussian (cf. Koch, 1979, p. 362):

A _ . -1
Vip,) =2 (5 )iz (22)

They give an indication about the estimability or the determinability of the variances o; and o;.
If the standard deviations O$i are below 0.2 the variances 02 can be said to be well determinable,

as they are accurate up to 20 %.
The correlation
(st)
- 12 (23)
1 1
Ay, (59,

P12

between the estimates on the other hand is a measure for the discernability or the identifiabi-
1ity. If the correlation coefficient Pis is less than, say, 7?5 % the variances are well discern-
able. Then with a high probability (of ca. 95 %) one will not identify the observational noise
as signal or vice versa. This measure is derived from testing multiple linear hypothesis (Forst-
ner, 1983) and seems to be useful here also.

3.2 Analysis of an AR(2) Process

We will now investigate, under which conditions the signal and the noise in an observed process
are estimable or separable. In order to get an idea of the features of the estimation process
the already mentioned AR-2 process, with a,=2 und a,=-1, has been analysed in detail.

Fig. 2 shows the variances and the correlation of the estimated variance components 02 and o; in
dependency of their ratio o2/02

2.
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Fig. 2 Estimability and Separability of Variance Components §2 and é;
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Instead of V(Q;) the relative accuracy, i. e. the variances V($2)' r of the variance factors
are given. They also depend on the redundancy r which for periodic sequences equals the number
m of the observations. One can derive from fig. £ that the standard deviation of the additional

. . Ny s ’\2. _/\2. . 2 2: - - -
noise variance o is o, *v7.8/100 = o, * 0.28, or 28%, if o’/o’ =1 and r=m=100 observa
tions are made.

The variances and the correlation of the variance components have been calculated from eq.(16)
using simulated data. The used processes, with m= 100 observations each, were not periodic
(Lindlohr,1982). Independently the values were derived from the theoretical power spectra, thus
representing periodic processes. The sums in eq. (8) were replaced by integrals assuming a suffi-
ciently large number m of observations. E. g. the element 814 then reads as (cf. eq. (19a)):

+1/2 +1/2

o OV du (24)
814 (—) = m J ———— du = m J 7
o? P2 (u) On sy 2
e -1y2 Y -1/2 (-0-2- 16 sin'mu +1)
e

The integrals for 8792879 and s, were solved numerically with a HP 15C computer. The results

22
of both calculations differed not more than 1 %, except for some profiles with very low signal

to noise ratio. This demonstrates the Tow influence of the border effects.

The correlation between the estimated variances never exceeds 75 %. The maximum value is
v18/35=0.7171 and is reached for small observational errors (0;/02-+0). Thus signal and noise
are always separable, the procedure will not interprete noise as signal or vice versa.

The variances o; and o; are not always determinable, though. If the variances are of different
order, i. e. the ratio o;/oz is very different from 1, then only the larger variance can be
estimated with sufficient accuracy. In the extreme cases (r-—0, r+«) the relative accuracy is 4/r
and 2/» for the variances oz and 02 resp. The last value 2/r is identical with the variance of
the estimated variance factor oé of a Teast squares estimation. The additional noise variance o;
obviously can only be determined if it is not much smaller than the variance 02 of the driving
process. On the other hand, even for strongly contaminated signals, o; is estimable, though with
only moderate accuracy.

These results are representative for observed processes where the spectral properties of signal
and noise are different, specifically if the power spectra differ in shape. If, in our case, the
noise would have been correlated, e. g. according to an autoregressive scheme of order 1, the
separability would have been much less, due to the similarity of the power spectra.

4. Numerical Considerations

4.1 Irregular Observations

Up to now we always have assumed that all signal values . have been observed. But the estimation
of the variance components is also possible if the sequence of observations is irregular. This is
of great practical importance as it increases the flexibility of the procedure.

If notall signal values are observed eq.(12) only is valid for the m observations y.. Then, the
special structure of 4 s lost. The normal equation matrix ¥ in eq.(14) is still band limited,
with band width p. The prediction of the < from the observed values y; needs about mp%/6 opera-
tions .(cf. Ebner et. al. 1984).
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On the other hand, the effort for calculating the elements 8.3 for the variance estimation is
prohibitive, as all elements of the inverse v are needed, which requires appr. m /e operations.
But it is possible to reduce the effort considerably, if one uses a slightly different iteration
scheme to solve the nonlinear (cf. the text after eq.(8b)) equation system.

The following equation system (cf. Forstner, 1979)

s 5 | | 0 [ 3 w
311 ’ Qe = 311 ! 812 Qe = e (25)
0 syl | % 0 Sp * Sgg| | 2, En

A

diagonalizes eq.(15) and after convergence leads to the same result, as Qe and @n then equal 1

(cf. Schaffrin, 1983). But the sums s, and 53 are much easier to obtain. First observe, that

11 2
8,7 % 659 = trD:r:mn—p s (26)
the total redundancy of the system. Now, 552 can be calculated from
= _ _ -1,T =1, _ _ 1,2 97
sZZ-tr[(C’ ANTA)Q, =m -tr¥y /On (27)

where m, is the number of observed values Yy s possibly not equal to m. The main effort now is
to determine #r ¥ . But as ¥ is band limited and only the elements of ¥' within the band are
necessary, the number of operations is only mp?/2, which is considerably less than m®/2.
Therefore with

-p-3 (28)
811 77 7 Sy

from eq.(26) the solution of eq.(25) can directly be given:

R w el 5/02 R R
b = —2— == ; with the prediction errors ¢ =4,z (29)
—€  5p-3 r-g - 1=
22 22
and
T . -
%, = — T S ;  with the residuals n. = y. -z, (30)
22 22
and s, from eq.(27)

Thus the total effort for estimating the variance components especially the additional noise
variance 0; is appr. 3 times the effort for the prediction of (xi) alone.

The simplification has the disadvantage that the speed of convergence is reduced and the infor-
mation about the separability is not available. The convergence can be increased by numerical
methods, which are discussed by Schaffrin (1983) with special emphasis on variance component
estimation. On the other hand, the correlation of the variance components may be approximated by

the theoretical values (cf. 3.2).

4.2 Regular Observations
If all values of the process (gi) are observed with no gaps one might distinguish two cases:

a. For rather short sequences (m < 20) the direct calculation according to eqs. (15) and (16) seems
seems to be feasible, if the sparsity of A, and the diagonality of the Qi are used to advantage.
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b. For longer sequences the estimation of the prediction errors éi and the residuals id could be

achieved from eq. (14). The variance component estimation could reasonably neglect the border

effects and the nonperiodicity of the sequence and calculate the elements 8, directly from
egs. (19)-(21), whereas the right sides could be derived from é_and ﬁ_(cf. eq. (29)(30)). In
this case the additional effort for the variance estimation becomes negligible.

5. Discussion

The estimation of variances in observed autoregressive processes can be accomplished in a statisti-

cally rigorous manner from a single sequence of observations thus not needing more information

than the classical identification procedures.

The interpretation of the variance component estimation procedure as weighted least squares solu-

tion for the composite power spectrum enables a simple theoretical analysis of the model in the

spectral domain and at the same time numerical advantages. The solution in the spatial domain is

very flexible allowing irregular gaps,

indirect observations such as slopes or curvatures or

observations between the grid points. An evaluation can be based on the variance covariance matrix

of the estimated variances. Specifically, the estimability and the separability of the variance

components can be derived, which for a special process have been discussed in detail, demonstra-

ting the feasibility of the approach.

The method easily can be extended towards more general processes including autoregressive moving-

average processes or vector valued processes. The solution in the spectral domain may even be used

for processes with arbitrary power spectrum,
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