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ABSTRACT

The multigrid method is a highly efficient iterative process for the
solution of large sparse systems of linear equations. It has been de-
veloped during the last decade and is being more and more applied in
numerical mathematics, physics and engineering sciences.

Under rather general conditions the rate of convergence of this iter-
ative procedure is independent of the size of the problem. Consequent-
ly the computational effort for the solution increases only linearly
with the number of unknowns.

This paper introduces the multigrid method and investigates its appli-
cation to digital terrain model interpolation by finite elements.
Further possible applications in photogrammetry are mentioned.

1. INTRODUCTION

The solution of large systems of linear equations has a long tradition
in photogrammetry. Going back in history it began with the introduc-
tion of the analytical block triangulation (H.H. Schmid, 1956) and the
digital terrain model (C,L. Miller / R.A. Laflamme, 1958). Since then
there has been a flood of contributions dealing with both subjects.

For most of the procedures proposed the least squares method is ap-
plied to solve the adjustment in point determination as well as the
approximation problem in digital terrain modelling. The resultant 1in-
ear equation systems are frequently sparse and may even become banded.

Until now, the direct methods for solving the linear equation systems
are used. Today, however, iterative procedures become very attractive
too, especially for problems based on regular grid structures. The
most advanced technique solving linear equations iteratively is the
multigrid method, which in recent years has been applied for the so-
Tution of difference equations resulting from various problems in phy-
sics and engineering sciences (W. Hackbusch/ U. Trottenberg, 1982).

A first application of the multigrid method for the generation of di-
gital terrain models has been given by U. Rude (1985).

2. THE MULTIGRID METHOD - A BRIEF REVIEW

The multigrid principle for the solution of large linear equation
systems for gridded unknowns is extremly simple: approximations with
smooth errors are obtained efficiently by applying suitable relaxa-
tion methods. Because of the error smoothness, corrections to the



approximation can be calculated on coarser grids. If this approach is
used recursively employing coarser and coarser grids one obtains opti-
mal iterative solutions, i.e. solutions for which the numerical expen-
diture required to achieve a fixed accuracy is proportional to the
number of unknowns.

Let
Nox, = fh (1)

be a linear equation system with the hx h coefficient matrix N, the
hxl vector of unknowns xp and the hx1 right hand side fp, al1 de-
fined on a grid Qp.

Within the classical relaxation procedures the Jacobi method and the
Gauss-Seidel method are of direct relevance to the multigrid method.
A closer analysis of these procedures shows, that they converge fast
for the high frequency part of the solution, but slowly for low fre-
quent solution components having wavelengths much larger than the
distance between two gridpoints. Because of this smoothing effect on
the high frequency errors the classical relaxation procedures are
called 'smoothers' speaking in the multigrid context. Let xﬂ be any
approximation of the solution xh of (1) and let us assume that xiJ has
been improved by v] relaxation steps. Then the corrections of xH
can be denoted by

axd i=

b Xp T % (2)

and the defect (residuals) by

N xJ

J .. -
dy = f - Noxo (3)

h

Accordingly, the equation (1) can be replaced by the defect equation

Nax) = dl (4)

Because of the preceding smoothing the defect equation (4) contains
mainly the low frequent solution components. Consequently, no fine
grid is necessary for its approximation. If jn (4) Nj is replaced by
any 'simpler' operator N supposing that Nh'l exists, the solution
Axé resulting from

Nod = g4d

provides for a new approximation

xﬂ+1 = xﬂ +oax} (6)

The choice of N , and this leads to the multigrid idea, is given by
an approximation Ny of N on a coarser grid Qy. Therefore the defect
equation (4) will be replaced by



i g
Noxd = o) (7)

assuming that NH1 exists. As dd and Axﬂ are grid funct1ons op a
coarser grid Qy one needs 1inear transfer operators I and IH betwean

the grids 2 and Qy as follows

J .. (Hg4d
dH = Ih dh (9)
and IE is used to interpolate the correction Axﬂ to Q,
Jo._ o¢h \J
Bxy := IH AXyy (10)

Because of the use of a coarse grid when solving for Axh this correc-
tion is called ‘'coarse grid correction' (CGC).

Summarizing the considerations above it is reasonable to combine the
processes of classical relaxation and of coarse grid correction.
Following this way one obtains an iterative (h,H) two-grid method,
whereby each iteration step consists of smoothing and coarse grid
correction (see Fig.l)

J J J_ J J j J j+l
X, ——————» X, —» d. = f_ - N x AXY — XY + AXY ——————— P X
h vy relax h h h h”h h h h v, relax h
H h
Ih oy Iy
NHAxH=dH
dJ > Axﬂ

Fig.l: Structure of a two-grid method (h,H)

The generalization of the two-grid method into the multigrid principle
is now reasonable: it is not necessary to solve the coarse grid defect
equation (7) exactly but it may be replaced by a suitable approximation.



A quite natural way obtaining the approximation is to apply a further
two-grid method to (7), where an even coarser grid than Qy is used.
This idea can be applied recursively using coarser and coarser grids
down to the coarsest grid, where the defect equation is solved directly
or iteratively. Thus a hierarchy of grids is constructed. In standard '
applications the meshsizes A, 24, 4A, 84, etc. are used, so that the
grids are nested. On the coarsest grid the problem has only very few
unknowns; the effort for its solution by any method is therefore neg-
ligible.

An illustration of different options to build up one multigrid itera-
tion cycle j is given in Fig. 2.

two-~grid method smoothing

fine-to-coarse

coarse-to-fine

O~ .~0

direct solution

V-cycle

three-grid method

V-cycle W-cycle

Fig. 2: Structure of multigrid cycles for two and three grids

As operators IH for fine-to-coarse transfer of the defect and IQ for
coarse-to-fine transfer of the correction the fullweighting (FW)
operator

1 2 1
Hoo1
Meflz ¢ 2 (11)
1 2 1



and the bilinear interpolation (BI) operator

1 2 1[h
h 1
o= (2 4 2 (12)
1 2 1|y

are mainly used. Other operators are given by K. Stiiben / U. Trxottenberg
(1982).

3. MULTIGRID APPLICATIONS IN DIGITAL TERRAIN MODELLING

For demonstration of the multigrid method the following example is
treated: interpolate a 33x33 gridded digital terrain model by the finite
element approach (H. Ebner, 1983) from a synthetic data set consisting

of 9x9 reference points (see Fig. 3a)

Fig.3: The data set (a) and the interpolated digital terrain model (b)

For DTM interpolation the objective function

81 , 32 33 , 33 32 .
pkzl Yk +iZZ jzl Vex,i.d +izl jZZ Voy,i,j = min (13)
with
“ =% 5 7% (14)
Py T B, T Bt B (15)
Yyy,a3 T a1 Byt g (16)



is used. The Vk are residuals at the 81 reference points, defined as
unknown heights 21 j of grid points Pi,j minus observed heights z|.

The Oxx,i,j and ny i j are second differences of the unknown heights
of adjacent grid po{nfs in x and y direction.

In our example constant weight p=100 was assumed for all reference
heights zkx. Equations (13) to (16) lead to a normal equation system
(1) with h=33x33=1089 unknowns which has been solved directly (see
Fig. 3b) for comparison with the following multigrid solution.

The multigrid method is demonstrated via V-cycles (see Fig. 2) with
initial values resulting from bilinear interpolation of the reference
points. The grids used were a 33x33, 17x17, 9x9, 5x5 and last a 3x3
grid where the normal equations have been solved directly.

Within one V-cycle the following steps were performed:

(1) smoothing on grid 33x33 with 3 Gauss-Seidel
relaxations

(i) coarse grid correction: recursive restriction of
the defect and 3 Gauss-Seidel relaxations at
each grid, direct solution of the normal equations
at the 3x3 grid, recursive interpolation of the
correction and 1 Gauss-Seidel relaxation at each
grid

(iii) smoothing on grid 33x33 with 1 Gauss-Seidel re-
laxation

Table 1 describes the convergence of the multigrid solution. For all
V-cycles and their individual steps the maximum value aAmax and the RMS
value amean of all 33x33 deviations between the direct solution and '
the respective multigrid solution are 1isted.

Table 1: Convergence of the multigrid solution (Dim.:[m])

V-cycle Operation Amax Amean
bilinear

0 Tnterey 3,082 0,660

RELAX 3 . 2,240 0,491

1 C6C 0.672 0.140

RELAX 0.353 0,103

RELAX 3 0,241 0,073

2 CGC 0,096 0,024

. RELAX 0.082 0.019

RELAX 3 0,043 0,014

3 Cac 0.022 0,005

RELAX 0.018 0.004

RELAX 3 0,010 0,003

4 CaC 0.002 0,001

RELAX 0.001 0.001




Fig. 4 - 9 demonstrate the co-operation of smoothing and coarse grid
correction by means of the deviations between the direct solution and
the multigrid solutions.
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Fig. 6: Deviations after the Fig. 7: Deviations after the
first coarse grid first V-cycle and three
correction relaxations

Fig. 8: Deviations after the Fig. 9: Deviations after the
second coarse grid second V-cycle and three
correction relaxations



About 318 000 multiplications have to be executed for set-up and pro-
cessing of the linear equation systems within all four V-cycles. This
means about 290 multiplications per grid point contrary to about

2 200 operations in the direct solution by band algorithms. The de-
monstrated high efficiency of the multigrid method in terms of reduc-
tion of the computational work gives cause for some optimism for its
broadening in photogrammetry.

4. CONCLUSIONS

It has been shown that iterative solution strategies nowadays become
very attractive especially for large linear systems based on grid
structures. At first view the multigrid method is associated with
applications in digital terrain modelling and digital image processing.
A closer analysis of the solution behaviour by means of local fourier
analysis and two-dimensional system design (D. Fritsch, 1984, 1985)
gives reason to believe in even more general applications.

Future investigations have to be made on the design of restrictors
and interpolators for the improvement of coarse grid corrections.

Another point of interest is the improvement of smoothing and the

transfer of coefficient matrices between different grids.

Digital terrain modelling seems to be a broad application field for

the multigrid method. On the one hand in data processing the areas of
interest have no longer to be segmented. In that way, consistency prob-
lems and redundant processing are avoided. On the other hand it gives
promise to very fast DTM interpolations. This will be needed in asso-
ciation with on-1ine DTM generation and verification (W. Reinhardt,
1986).
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