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ABSTRACT

For second order design of geodetic networks some problems arise. One has, for
instance, to take into account the accuracy ratio between direction and distance
measurements, furthermore the problem of orientatien unknowns and to fulfil

some cost functions, to name but a few. Moreover for free networks, idealized
regular criterion matrices must be transformed into singular ones. In this

paper there are some proposals to solve these problems.The weight matrix for an
observation plan isg obtained by means of a linear complementarity problem. This
solution improves the simple least-sguares solution by add of inequalities to ful-
fil some requirements such as positive weicghts, accuracy ratios and cost
functions. Tc demonstrate the design method, examples of real geodetic networks
are presénted, where some desired constraints are introduced. Numerical and soft-

ware problems will also be discussed.

INTRODUCTION

In second order design (SOD) of geodetic networks the problem is to determine
weights of the observations. It is a desired goal to plan the number of obser-
vations at home, because only on this way one can optimize the use of its staff
and instruments to save time and money. For this reason some restrictions are to
fulfil. On the one hand the observations ought to be uncorrelated, which leads
to weights greater or equal zero, on the other hand, there must be considered
cost functions, accuracy ratios for heterogenious observations etc. One problem
is to pretend the criterions, which have to be approximated by SOD-solutions.
Many geodesists have worked onto this field, such as F.R. Helmert, O.Schreiber,
H.Bruns, W.Jordan, I. Jung, A. Tarczy-Hornoch, to name but a few. The starting
point was to minimize some functions, described by scalar values, but since

W. Baarda and E. Grafarend, which introduced criterion matrices, much work was
done about the approximation of these matrices. E. Grafarend/B. Schaffrin (1979)
derived such idealized matrices in a pure analytical way, they are called 'Tay-
lor-Karmann structered criterion matrices'. These matrices are always regular, so
they have to be transformed into singular ones for free networks. One trans-
formation will be treated in this paper, because of its less numerical expendi-
ture. Another problem is to find a solution, which bears in mind the previously
mentioned restrictions on the observation weights. Schaffrin et al. (1980) have
shown, that this can be done by means of the linear complementarity problem.
(LCP) . For its solution algorithms exist, especially Lemke's and the Cottle-



Dantzig algorithm; both base upon complementary pivot strategie. To use such
an algorithm the desired restrictions have to be formulated as inequality con-
straints, whereby the number of the constraints is bounded only by size of the
computer the algorithm is implemented. Thus there are many possibilities for the
user to introduce restrictions to see which observation plan is 'best' in some
sense. Also reliability aspects micht be formulated as inequality constraints

(3. v. Mierlo, 1961). Furthernore, B. Schaffrin (1981 a, 1961 b) has shown, that
attenuation of the ineqguality constraints leads to a parameterized linear comple-
mentarity oroblem (PLCP), to solve with the same algorithms available for LCP.

In the following, after a short description of the solution method for SOD, the
main objective of this paper will be to show the efficiency of such an algorithm,
namely the Cottle-Dantzig algorithm, available as FORTRAN program written by

C.R. Liew/J.K. Shim (197f). Some restrictions on the observation weicghts are

introduced and demonstrated by examples.

CRITERION MATRICES

In SOD with criterion ratrices the fundamental eguation is (K.R.Koch, 1980:153)
D(x)=0°C_=0“(A'PA) (1.1)
deriveé from the Gauss-Markoff~moael of full rank

E(y)=Ax  with D(y)=02+p (1.2)

The operators E and D denotes the expectation anc dispersion, whereby the nxu
matrix A contains given coefficients with rk(a)=u<n, x is the ux1 vector of un-
knowns, y the nx1 observation vector, 02 the variance of the weight unit and P
the nxn weight matrix of the observations. For the uxu matrix gx some aesired
criterions may be introduced, such as error circles for points, whose coordinates
are to be estimated in an evaluation afterwards. Thus this matrix contains such
criterions in an idealized form, which the weights to be realized can approximate
only. Some proposals were made to construct such matrices (W. Baarda, 1973, E.
Grafarend, 1970, 1972, F. Sarkdzy, 1979, E. Grafarend/B. Schaffrin, 1979). For
the examples in this paper criterion matrices after E. Grafarend/B. Schaffrin are
used,which have Taylor-Karman-structure, they are to construct very easy by means
of computers. In a free network, where rk(A)=g<u<n the idealized criterion
matrix has to be transformed into a singular one, because the unbiased estimable

parameters are projected parameters (K.R. Koch, 1980 : 169). A useful projection is

R=(A'PA)”A'PA (1.3)
m

(C.R. Rao/S.K. Mitra, 1971:51) with (Q'Eé); as g-inverse for minimum norm least-
squares solutions. The matrix R is symmetric and idempotent because of the defi-

nition of this g-inverse. For g =(§'E§);§'gé X the dispersion matrix for the

projected parameters is the Moore-Penrose inverse or pseudoinverse

~=2| Ta ' - ' N ' 1.4
D(¥)=0%(2'PA) _A'PA(A'PA)]_[(2'PA)_A'PA] a.4

=o“(a'pa)”



Thus, for the g-inverse in Eg. (1.3) the Moore- Penrose inverse will be introduced
such that

R=(A'PA) TA'PA

=mEss) o= (1.5)
An efficient formula for calculating R in Eq. (1.5) is described by K.R. Koch

(1980:59) by means of the matrix E as basis for N(A) and which is therefore
called ‘'null-space basis'. The projection matrix R 1is obtained as

R=;—§'(gg')'1E (1.6)

which also W. Baarda used as 'Sm-transformation', because it provides for mini-
mum trace of the dispersion matrix for the estimable parameters (J.v. Mierlo,
1978, 1980). Eg. (1.6) is valid for arbitrary regular P matrices, then R may
be rewritten as

R=(U'D)'U'U with U=SA and P=8'S (1.7)

Because of E:=N(A) and therefore AE'=0, E is null basis of U, too, then
SAE'=0. The matrix E can generally be given by purely geometrical considerations
since it contains the changes the unknown parameters X; can undergo without
affecting the observations Yy (P. Meissl, 1969, A.J. Pope, 1973). In combined

plane networks (directions and distances are measured) the matrix E will be

1 0 1 0 1 0 o ... O
E=|C 1 0 1 o 1 0 ... 0 (1.8)
R A N
“1 1 2 2 " m o e

because the networks may undergo translations and a differential rotation. The
first columns are responsible for coordinate parameters Xi0 Yy i€e{1,2...m},
the last columns relate to the orientation parameters oj - Coefficients in the
last row are the approximate coordinates and a factor o for dimensions (is the
measurement taken as dimension : gon, o will be 200/7). For these networks,

the Gauss-Markoff-model can be written as

= X - _ 2 5-1
E(Y)—| 51,é2 1 with D(y)=c".P (1.9)

%)

which leads to the normal ecuations
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with x, as the u1x1 coordinate vector and x., as u,x1 vector of the orientation

2 2
unknowns.



To approximate by SOD is now

' - +
A PA A.PA C C M
1 1 —1—-2 X Xy TRX | X%y 12 (1.11)
A PA., A_PA o C M M,
=2==1 =2-=2 TR X, X%, 21 22
rs
with gx x  as criterion matrix for the coordinates and orientation parameters. In
i73

this paper only the upper left halve will be approximated, because much work has

to be done to built up combined criterion matrices and about the choice of the
g-inverse, respectively.
Schaffrin 17
lar criterion matrix has to be transformecd into a singular one, which should have

the same deficiency as A

For the conditions of the g-inverse in Eg. (1.11) see the

paper of B. (1981 c). For the rank deficiency of A an idealized regu-

7° This transformation will be done by the previously
introduced projection matrix R, such that
Rl

= RC (1.12)

C
x1x1 TK
In this case, if QTK has Taylor-Karman structure, QX % will have'derived Taylor-
171
Karman structure', with rk(C % )=rk(1§1)=q1 <u; <u. In combined plane networks,

171
the deficiency of 51 will only be u1—q1=2, a result, which may surprise some

readers because A, has full rank and the total rank deficiency of A is u-g=3. The

2
matrix R for this case can be written as
1 1 -1
-5 0 oot o 0
1 1
0 1—5 O ...... 0 o
R= . (1.13)
. 1-1 0
m
1 1
0 LR 0 1 o

with m as number of the netpoints, because the networks can only undergo transla-
tions, that means, only the two first rows without columns for orientation para-
meters of E must be considered. More informations about the rank deficiency of

these networks provides the contribution of D. Fritsch/B. Schaffrin, (1981).

LEAST~SQUARES SOLUTION WITH INEQUALITY CONSTRAINTS FOR SECOND ORDER DESIGN
PROBLEMS

The SOD problem is to solve the matrix equation

o

Q:=C =A'EA (2.1)
which leads to the linear equations
g = (A'8A")p (2.2)
with g := vec Q and p := vec P, the vectors of the matrices Q and P, columnwise

built one
(2.

vector after another, wheras ® denotes the Kronecker product. A solution

of Eq. 2) delivers generally correlated observations which are not realizable

(J.Bossler

ing reformulation of Eq.

et al.,1973).Hence due

(2.2)

to a proposal of B. Schaffrin (1877), the follow-

has to be solved



(A'®@ A')p=g (2.3)

which constrains a weight matrix P:=diag p and is called 'Diagonal Second Order

Design Problem'. The symbol @ denotes the Khatri-Rao product, here defined as
AJOA] :=|g%@§;, ....... ,gé@gﬁl (2.4)
A solution of the in general inconsistent equation system (2.3) can be found by
means of least-squares and will perhaps lead to some negative weights (G. Schmitt
et al. 1978, G. Schmitt, 1930). The minimization of
p'(A'@A') ' (2'OA')p-2p' (A'6A')g+a'g (2.5)
results into the normal equation system
(A'OA") " (A'OA')p=(R'OA") 'g (2.6)
which can be rewritten to
(AA'@AA')B=(A'OA")g (2.7)

with ® as Hadamard product, in this case defined as

=1
(AA'®mAR') = . . (2.8)
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To fulfil some requirements, such as positive weights and accuracy ratios , let
us now introduce the inequalities Hp > c¢. To solve is then

(A'6A')p=g subject to Hp > ¢ (2.9)

with known rxu matrix H and known rx1 vector c¢. The least-sqguares solution of

Eq. (2.9) leads to the guadratic program

minimize p'(A'@A')'(A'GA')p-2p' (2'OA')g+g'g

(2.10)
subject to Ep > ¢

~

By means of the vector v of slack variables, defined as y':=|v?,v2 2|

eV
27 r

the inequalities may be reformulated as ecualities

gp-v=c (2.11)
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The minimization of the Lacrangian function
L(p,A,v):=p'(A'GA"') 'A'OA")p-2p' (A'OA'") 'g+g'q-2)"' (Hp-v-c) delivers the well-kncwn

Kuhn-Tucker conditions

(A'OA") ' (A'OA')P-(A'OA') 'g~ H'A = Q
Hp -y - ¢ =0 (2.12)
v'a =0

with v,A>0, which in qguadratic procramming are known as 'linear complementarity
problem (LCP)'

v=Wi+z, Vv'aA=0 and y,A >0 (2.13)

This can be solved by means of complementarity alcorithms. In Eg. (2.13) the rxr

matrix W and the rx1 vector 2z are substituted for

=TEee T = ‘ (2.14)

with E as simple least-squares estimation, obtained by Eg. (2.7). The final obser-

vation weights will be got by

'13'5 (2.15)

p= P+(AA'®AA')

which shows, that the simple least-scuares estimation P is improved to fulfil the
inequality constraints. We will call this solution 'Inequality Constraint Least-

Squares Solution (ICLS)' in contrast to the 'Simple Least-Squares Solution (SLS)'.

WEIGET CONSTRAINTS FOR THE DIAGONAL SECOND ORDER DESIGN PROBLEM

As solution of the LCP one gets weights which fulfil some inecuality constraints.
The problem is to formulate all desired restrictions on the observation weights
as inequalities. One important restriction is that the estimated weights are

always greater or equal zero, also
p >0 (3.1)

because negative weights give no sense. Another restriction may be the idealized
accuracy structure contained in the criterion matrix to improve on the average

(B. Schaffrin 1980, 1981 b). This will results into the inecualities

(z'mz')p > 1 (3.2)
with Z:=AU, Q=ULU' and L= diag l. The matrix U contains the eigenvectors of the
inverse criterion matrix and the matrix L the latent roots, respectively.

B. Schaffrin et al. (1977), used this singular value decomposition also to refor-
mulate the diagonal SOD and it is called 'Canonical formulaticn of diagonal SOD'.



Furthermore, J. van Mierlo (1981) has shown that reliability aspects will be con-

sidered as

B < alags Byr Sos) ‘ (3.3)
where g is a nx1 constant vector derived from the level of significance a, the

power B8 and a 'measure' 30 as value for the external reliability of a network.

For networks, where directions and distances can be measured, the available instru-
ments may be bounded, so one has to consider the highest attainable accuracy.
2

This means, that D(y)max =0 2_1 has to be reformulated into inequalities. The

result is

é < °2| O?iax’°5iax""°1iax"" ' (3.4)

which is very important, because it contains also the accuracy ratio between the
direction and distance measurements. Furthermore, by these inequalities, the at-
tainable absolute point accuracy can be calculated, expressible as error ellipses.
This will be demonstrated by the examples later. The values Ofmax are ' a priori
variances for the measurements, which might be individual perhaps for considera-
tions of length dependence accuracies.

Moreover, if directions are measured, it is desired to have same accuracy for
every direction observed on one station. This leads to group weights, here espres-
sable as

Lo 4

Pys =

ij ik ie {1121111m} (3-5)

with i as index for the number of observation station and j,k are target points.
Eg. (3.5) changed in inegqualities gives

Iy
[oN)

Fp

(3.6)
-d

-Fp

tv

however with known vector d. The consideration of these inequalities can be done
by two steps: at first one gets individual weights by a first ICLS solution and
introduced the maximum value ﬁi as elements di, secondly, a further ICLS solution
will provide for group weights. G. Schmitt (1979) has shown experiences with in-
dividual and group weights obtained by SLS solutions.

Last but not least perhaps cost functions are to taken into account, because only

a fixed amount for execution the measurements is available. A simple formulation
is

c'p < k (3.7)

where a scalar value k is the given cost constraint. It should be noticed, that

this manner of ICLS solutions cannot minimize some cost functions in contrast to



W. Augath (1976) and F. Sark&ézy (1979), to name only two. It is the accuracy of
the points contained in the criterion matrix, which will be approximated subject
to some restrictions. The inegqualities formulated previously can be inconsistent
in some cases, sO they have to be attenuated to lead to a solution. This can be
done by means of a ' parameterized LCP (PLCP) ', introduced in SOD by B. Schaff-

rin (1981 b), but will not commented on in this paper.

EXAMPLES

In the following two examples are considered, a very simple network (only a
triangle) and a real network to establish for detecting recent crustal movements
in Turkey. Both examples are combined plane free networks, where the main objec-
tive will be to fulfil accuracy requirements only. At first, the solutions for

the triangle will be discussed. The ICLS1 solution contains the inequalities
Eq.(3.1) and Eq.(3.2). As shown by Table 1 and Table 2 the negative weight for the
distance 2-3 is vanished and the error ellipses are always smaller than the pro-
jected ones. For 6% = 1 the variances of the directions would be =~ 0.03 [mgon]
which cannot be realized. As highest attainable accuracy was introduced :

= 0.1 [mgon] and o = 5 [mm]. The including of Eq.(3.4) to Eq.(3.1) and

G q. .
Eé%i3.2) led to none so?éiion, because Eq. (3.2) was to strong. A second ICLS so-
lution, called ICLS2, without Eg. (3.2) shows a better shape of the error ellipses,
thougt the desired accuracy structure is unimportant worse. Also this solution
provided for group weights, which needed not to formulate as inequalities especial-
ly. The error ellipsesare figured in Fig.1 and Fig.2 for both solutions.

For the turkish network also group weights for the directions were desired sub-

= 0.1 [mgon] and o ., = 10 [mm]. In Table 4

‘dir dis )
the estimated weights by means of ICLS solution are shown. For ¢° = 4, the con-

ject to the highest accuracies:

straints are fulfilled and the dimension for the error ellipses is fixed. As one
can seen in Table 5 the error ellipses of the ICLS solution are always smaller

than the desired ones, thougt inequalities of Eq.(3.2) were not considered. Also
the shape of the error ellipses is better, because of the same accuracy ratio of

the direction and distance measurements.

CONCLUSION

In this paper was shown, that the problem of ' diagonal SOD ' can be solved by
means of an ICLS solution, which one gets by complementarity algorithms. For the
examples previously the Cottle-Dantzig algorithm was used. The FORTRAN version by
C.K. Liew/J.K. Shim of this algorithm is easy to implement because it is built up
modular and consists of six subroutines, the largest one has 44 statements. If
there is no complementarity solution, the program will terminate his run with

' ray termination ', that means, the inequalities are too strong and the user must
perhaps reformulate his problem. Thus, for the two main problems in SOD, namely
the set-up of criterions and the approximation of these criterions, the last one
can be solved very well with such algorithms. But for the first problem much work
has to be done, particularly for combined networks,. where one has to consider co-

ordinate and orientation unknowns. Moreover in free combined networks investiga-



tions must be made about the choice of g-inverses, because the criterion matrix

for coordinate parameters only might be given, which was the case for this paper.
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Table 1: SOD solutions for the triangle

from to SLS ICLS1 ICLS2
1 2.575 3.111 1.000
2.579 3.324 1.000

2 3 2.866 3.479 1.000

1 2 c.170 c.197 0.756
0.037 0.427 0.609

2 -0.031 0.534 0.466




Table 2: Error ellipses for the triangle (solution 1)
error ellipses
point coordinates projected ICLS1
X [.m] y A [clm] B | ¢ [gon] A [cm] B ¢[gon]
‘ I
] ! | | H
| T T
I | |
3000 : 4000 0.56 : 0.40 : 5.13 0.55 : 0.33 I 8.72
2 7000 | 8000 0.59 | 0.40 | 91.04 |0.59 | 0.32  87.59
|
9000 | 1000 0.65 | 0.43 !139.55 |o0.61 | 0.31 | 140.28
| | |
| ! I . .
Table 3: Error ellipses for the triangle (solution 2)
error ellipses
point coordinates projected ICLS2
x [m] vy A [cm] B ¢[gonl A [cm] B ¢[gon]
i ] I ] !
i | 1 ] !
| o | ' oas |
1 3000 | 4000 0.56 1 0.40 | 5.13 0.53 ! 0.49 | 13.70
1 I
2 7000 | 8000 0.59 ! ©0.40 | 91.04 0.57 | o0.50 | 88.16
9000 | 1000 0.65 | 0.43 1139.55 |0.62 ! 0.53 | 134.57
I | ]
! ! | | |
Table 4: SOD solutions for the turkish network
from to SLS ICLS
1 2 5.513 4.000
3 9.512 4.000
4 15.260 4.000
5 8.738 4.000
6 5.340 4,000
2 3 14.455 4.000
4 7.721 4.000
5 7.431 4.000
6 6.152 4.000
3 4 6.449 4.000
5 6.779 4.000
6 7.578 4.000
4 5 6.845 4.000
6 6.857 4,000
| 5 | 6 | ______4.792____| ____4.000 ______ ]
1 2 -0.864 o}
3 0.222 (0]
4 -0.787 0.309
5 1.197 1.567
6 -0.276 0.415
2 3 -0.937 0.295
4 0.172 0
5 2.036 2.310
6 -0.257 0.419
3 4 -1.041 0
5 -0.314 0.636
6 1.816 2.198
4 5 ~0.412 0.327
6 2.233 2.481
5 6 0.114 1.736




Table 5: Error ellipses for

the turkish network

error ellipses
point coordinates projected ICLS
x [m] vy A [cm] B d[gon] A [cm] B o[ gon]
: z | L |
i i i # :
|
1 4500 ! 6500 1.48 : 1.04 { 16.71 1.08 | 0.92 ! 0.96
I
2 18500 : 1500 1.40 | 1.00 1111.85 0.98 I 0.82 : 149.05
I | I
3 25000 :18500 1.38 5 1.00 : 21.47 0.96 : 0.82 : 197.12
|
4 13000 123500 1.38 | 0.99 :109.43 0.97 : 0.81 : 143.67
|
5 13500 | 6000 1.05 ! 0.82 | 89.13 0.72 | 0.64 | 176.91
6 17500 | 18500 1.02 1 0.78 | 88.49 | 0.69 | 0.63 | 194.49
|
l ! L | L L
| y
i ]
’ &
----- projected
— ICLS
g
X —l X
Fig. 1: Solution 1 for the Fig. 2: Solution 2 for the
triangle triangle
| y o~ by dir. onty
4 \ 4 —i+— dir anddis.
0 |
\\’ -, oy
F ]
‘\—/ \__,-”
2f ‘\) 1’-‘\|
O
- e Pt
£~

X

Fig. 3: Error ellipses of the

turkish network

b 4

4: Final observation plan of the

Fig.

turkish network



