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ABBTRACT

The progress in digital photogrammetry aight also call for power-
ful algorithes solving problems such as systea design for data pre-
processing and most recently digital object reconstruction. Though
the method of least-squares serves as an efficient tool for these
tasks, there are some cases in which it is insufficient because of
its smoothing effect. The alternative is given by a generalization
of least~squares to provide for a Chebyshev foraulation (L,-forau-
lation) of the problea. '

For that reason the aethod of inequality constrained least-
squares (s introduced. The algorithms used to solve L -approxima-
tion probleas are the REMEZ algoritha and the linear coampleasenta-
rity algoritha, Examples from digital and analytical photogrammetry
deaonstrate the advantages of these algorithas,
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1. Introduction

Digital photogrammetry nowadays is far more than only an exten-
sion of analytical photogrammetric methods:t entirely new concepts
of disciplines like electronic engineering, digital signal proc-
essing, computer science and statistics are to take into account.
This implicates on the one hand a re-orientation of photogramae-
try, but on the other hand it serves as basis for new application
fields for instance in robotics and coaputer vision. As far as the
algorithmization is concerned, there are two premises on it:1 first
it should be fast and secondly it should be reliable, that aeans
to take care for exact geometric modelling and object recon-
struction. A look at the data flow in digital photograsaetry (see
Fig. 1) indicates, that powerful algorithms have to be wused in
data preprocessing and data analysis.

Data Analysis

Digital Data Inage Point ==J' Object ]
Iaagery Preproces. Matching Deterainat{ Reconstruct.

Fig. 11 Data flow in digital photograasetry

The digital imagery process serves as digitizer of continous ob-
jects and delivers the data for the second main step in digital
photogrammetry: it includes methods of noise reduction, contrast
improvement, filtering, image segmentation and so on. This data
preprocessing has primarily to saintain the geometry of the dig-
ital image, what is very important and demands for so-called
"systea tuning". That means, the system or algoritha applied to
the data has to be designed properly.

The other main step of digital photograssetry is the final data
analysis, what is standing for image eatching, point deteraination
and object reconstruction. Adjusteents, approximations and perhaps
some statistical assertions are the tools for these tasks.

The algorithmization coamonly used to solve most of the probless
above is based on the aethod of least-squares introduced by
C.F. Gauss in 1793 (H. Wussing, 1982)., Most of the modern statis-
tical inference is derived from that method and there is no reason
to refuse this powerful approach. Sose advantages are given in the
following:

(1) there is a siaple mathesatical formulation behind it

(i1) efficient solution strategies such as sparse matrix
algorithas and wmost recently aultigrid methods can be
used

(i11) one obtains error measures for the goodness-of-fit.

But there is also a great disadvantage of the method of least-
squares: it daoes not pravide for the worst case, but smoothes the
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observation errors by the minimization of

n 2
ain T pi'iz =ain|l e Il =: ain L, nora (1
x i} X P X

with regard to the unknown parameters x. For that reason it is not
suited for the approximation of sharp-edged linear systems such as
filters etc. as well as object reconstruction, in which it is
desired to place a bound on the errors,

The way out from this weakness of least-squares is given by the
.Chebyshev formulation (L.~foraulation} of the problem, which mini-
aizes the msaxiaum error

ain sax | e | =ain] e || =t nin Lo nora  (2)
x 1<i{<n Py X P X

and thus takes care for the worst case., But the disadvantage of
this objective function in the past was the lack of algorithamsj
nost of the problems had to be solved by Llinear programming tech-
niques. Further developments in numerical mathematics and the dis-
cipline of operation research changed the situation. Today there
are powerful algorithms available for instance the REMEZ algoritha
and the linear complementarity algorithm being shortly comsented
on in the following.

2. The REMEZ Algorithes

In one-dimensional applications such as the design of edge oper-
rators and filters, respectively, the REMEZ algoritha provides for
fast and accurate computation of the impulse response. Very soon
after the development of this algorithm, the IEEE society used it
for the design of selective systeas (filters, differentiators and
Hilbert transformers) in digital speech, signal and image process-
ing.

Thus, T.W. Parks/J.H. McClellan (1972) gave already a comprehen-
hensive program package coded in FORTRAN for the design of linear
phase finite {mpulse response digital filters, which can also be
found in L.R. Rabiner/B. Gold (1975), This program ‘package 1is
nowadays still the standard i{n digital data preprocessingj there-
fore digital photogrammetry should have some profit of i{t, too.

An  extension of this package in such a way, that it includes
also Wiener filtering for noise elimination is given by E.U.
Fischer/H., Friedsam (1977).

Let be

e(x) = p(x)(f(x) = hix)) : (3)

a4 continous approximation problea with e(x) as error function,
p(x) is any weight function, f(x) is the ideal to be approximated
and h(x) the polynomial of the approximation; all functions are
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dependent of the one-disensional variable x. The REMEI algoritha
is an iterative procedure to determine the polynomial coefficients
h(x) nuaerically with regard to (2). A complete description of the
algoritha is given by H. Rutishauser (1976), thus only its basis
will be reviewed here:

(i) Let hi(x) be the polynomial of the optiaum approximation
with degree n for the continous function f(x) defined
within the interval I. Then there exist at least n+2 saamp-
les xg?x{>Xpdeeesdxpntyy where the error function alx)
takes on its extrea values *I e U5 alternately, That means
there is an e(x )=(-11Kh vku0,1,2,,,.0yn+t with hatll o U5,
These n+2 samples are called ‘alternant’ of f(x), Though
p(x) is clearly given, it aight exist several alternants.

(1i) The set of n+2 samples xgdXx(dXndesssdxpeyls called ‘refer-
ence’ and its belonging polynomial r(x) with r(xk)-f(xk)-
(-1)%h 1s called ‘reference polynomial’, 1In this context
it is to be said that |h| is the ‘reference deviation’,

(1i1) By f(x) and the reference xo)x1>x2)....>x +y the refer-
ence polynomial ri{x) and h are clearly deterained.

The algoritha starts with an arbitrary choice of the reference
and computes the reference deviation with regard to the polynoeial
ri{x}, which aight be a trigonometric or natural polynomial. Then
the error function e(x) can be obtained, whose extres values are
generally greater than the reference deviation. Thus one has to
replace old reference points x, by new references “k' what results
into an ‘increase of h contrary to h. During this exchange it

‘should be guaranteed, that the sign of e(x,) changes alternately.

This procedure {s called ‘amultiple REMEZ exchange algoritha’. As
result of such an {terative process a reference polynoeial is ob-
tained, whose reference deviation corresponds with the saxieoua er-
ror of the error function.

The REMEZ algoritha is very fast and therefore well-suited to
solve one-dimensional approxisation and optimization probleas., But

its main disadvantage is, that it cannot be extented on higher di-
aensions.

3. Inequality Constrained Least-Squares

Another way to solve L _-approximations is given by the method of
inequality constrained least-squares (ICLS), which has been devel-
oped within the discipline of operation research (C.K. Liew, 1976)
and introduced into geodesy by B. Schaffrin (1981}, The well-known
equality constrained least-squares estimation is a special case of
the ICLS estimation. But the ICLS method gqeneralizes ordinary
least-squares in such a way, that upper or lower bounds or both,
are introduced which is quite practical. A first experience with
ICLS-approximations in geometric modelling is given by D. Fritsch/
B. Schaffrin (1980), in which a comparison between the REMEZ al-
gqoritha and an ICLS algorithaization has been carried out., The
generalization of Lo-formulations on two-dimensional approxisation
probleas is exhibited in D. Fritsch (1982), so that it will be
reviewed {n the following for higher dimensional applications.
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Let be

y + e = QAx ' P pos. def,

(4)
n a

{y,e}€ER , x€lR , rkA=a , a<n

@ linear model, {in which y is the vector of the discrete func-
| tion(s) to be approximated, e its belonging error or inconsistency
| vector, both with regard to a given positive definite weight

marix P, The right hand side is represented by the known coeffi-
| cient matrix A and the vector x of unknown parameters. An ICLS
| foraulation starts from (4) and {ntroduces linear {nequalities
Hx 2¢c, so that (4) {s generalized into

Yy + e = Ax ' P pos. def,

i subject to
|

| Hx > ¢

(5)
n ] r

{y,2}ER vy X€R , e¢eR , r<a<«n

rkA=a , rkH=r

its solution can be obtained by the ainimization of the objective
function

ain ¢(x) = 2x'A'PAX = 2x"A'Py + y'Py
X

(6)
subject to

Hx 2 ¢

With the {ntroduction of the slack variables vis|v 1VgreeeeyV ]
the inequalities may be transformed into equalities r

Hx - v = ¢ ' (7N

which will be considered by means of Lagrangian amultipliers in
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ain Lix,A,v) = 2x"A'PAx-2x'A'Py+y 'Py-2X "(Hx-v-c) (8)
X

SBetting the partial derivatives of the Lagrangian fuction to zero
rasults into

L . .
— = 24'PAX - 2A'Py - 2H'A = 0 (9a)
X .

aL A A
— ® <2(Hx = v -¢) =0 (9b)
P

aL a“a
-_— -41 v s ° V1-1|2||'|||r (9‘)
ov i1

This equation systes is necessary but not sufficient to solve ICLS
problems. For that reason the linear inequalities have to be pa-
raseterized such that

Hx 2 ¢ + ak , acR , ak=20 (10)
which leads to further equations (D, Fritsch, 1985)

oL
alak) | a=0 i '

Bystem (9) and (11) corroipond now with the famous Kuhn-Tucker
conditions in quadratic prograsaing. The ICLS solution x is given
by solving (9)

X e atrartatey + et (12a)
subject to
ik =%emc , vieo , ¥520 (12b)

Another formulation of (12) can be obtained by
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A A
find v ,2 20

A A
such that vs MA + q (13)

A A
and v'i= 0

with substitutions

Moos HAPAY D', q o= HY - ¢ (14)

{

X 1 (A'PAY" A'Py “"simple least-squares solution®

But how can the aethod of ICLS be used to solve Lo~approxisa-
tions? This question is now simply reduced to the foraulation of
linear inequalities. Let be ¢ the maxiaum error of the L_-foraula-
tion

e= ain L nora (13)
X

thus the following inequalities will provide for the Chebyshev
solution

A

2 y-¢€ A y -¢
= X 2 (16)

AX < y +¢€ -A -y -€

That aeans, the solution space has been reduced to a band with
bandwidth € (see Fig. 2)., Naturally, there is no a priori know-
ledge on the worst case € ,
thus it has to be found out
during the solution process,
This implicates once wmore
iterations, because also the
ICLS solution is based on an
fterative pracedurae.

u

Fige 21 Lo-solution space
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A reasonable approach to get L.-approximations by eeans of the
method of ICLS starts with a first Chebyshev number (initial

value) €

ist steps e, ®aey, e A | ':il
1<is<n
subject to (17)

0.6 £ a $°c9

in which eg is the nsaxiaue least-squares error or residual. The
second step considers the‘initial value el and the first eaxiauas

ICLS residual e, = max "ll
{<isn
1 .
2nd step: €o ; (el+ € ) (18)

s0 that the i{-th step looks as follows

) 1
coapute e, =~ (g, _, t+e )
i 2 i-1 1-1
i €4 % €54 + & ' 5«1 (19

thén_the iterations are finished

with é‘as inconsistency number depending on the accuracy level
desired,

4. The Linear Cosplementarity Algoritha

The algorithes used to solve ICLS approximation and estisation
probleas are based on linear complementary pivet theory (C.Z.
Leake, 1968, R.W. Cottle / G.B. Dantzig, 1948). A detailed de-
scription of the algorithe according to Lemke is given by D.
Fritsch (1985), but there {s also a master thesis on a compari-
son of the Leamke and the Cottle-Dantzig algoritha (Ch. Heipke,
1986). Both algorithas solve (13) by a finite number of itera-
tions, {f the problem has a complementary solution. Because of
the coamplementarity of the slack variables vi and the Lagrangian
sultipliers Ay Vi=1,2,,...,r , (13) {s called ‘linear complemen-
tarity probles (LCP)°,

For the application of LCP algorithms (13) {s rewritten to
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$ind 9,1 20
such that Vv = M} + 02, tq (20)

and VA e 0, 2z2g€R, 2520

whereby the artificial variable 25 has to be minimized; the vec-
tor @« is defined by e1=[ t,1,s¢0¢y1 ]'« The algorithas prove at
firet whether the vector g 20, because this is the trivial solu-
tion. Otherwise it continues with a modified Simplex method and
results in the complemantarity vectors v andx , if there is a com-
plementary solution.

A first comparison of the Lemke and the Cottle-Dantzig algoritha
(Ch. Heipke, 1984) showed, that the former procedure is more ap-
propriate than the latter one with regard to the following fea-
tures

(1) indication of the existence of a complementary
solutian

(11) robustness against roundoff errors
(1ii{) computation time
(iv) handling of the algoritha
FORTRAN-coded versions of the Leake algoritha are given by A,

Ravindran (1972), supplemented by L.68. Praoll (1974), as well as
a4 slightly changed version coded by C.K. Liew/J.K. Shia (1978).

3. Applications

A first application of the algorithas above in digital photo-
grammetry has been carried out in a comparison of classical edge
operators (Sobel etc.) and differentiators designed by the REME!

" algorithm. Starting with the simplest differentiator teaplates
(see Fig., 3)

0 -1/2 0 0 0 0

0 0 0 -1/2 0 1/2

0 1/2 0 0 0 0
L d N

Fig. 31 Simple differentiator teaplates
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the aim was to study edge detection of noisy digital images. Al-
though this differentiator and also the Sobel operator worked very
wall in a synthetic unblurred image, they did not in the blurred
case, For that reason differentiators of length S and 7 have been
designed (see Fig, 4), which gave a better image gradient for fur-
ther processing.

I R R P R R R R R T R R R R R R 222 A A2 ARl Rt R ]y

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORTITHM

OIFFERENTJATOR
FILTER LENGTH = 5
$¢¢¢¢[MPULSE RESPONSE*¢c¢» .
H( 1) = =,10420300E+400 = =H{ 5)

Ht 2) = «22122930E400 = ~H{ 4)
Ht 3) = 0.0

BAND 1 BAND
LOWER BAND EDGE 005000000
UPPER BAND EDGE +500000000
DESIRED SLOPE 1.000000000
WEIGTHING 1.000000000
DEVIATION +826525893
EXTREMAL FREQUENCIES
.0156250  .2812500 +4843750

S2EE 000 S SRS 240 S ¢SS 40 S 0SS NN SRR SRS SNNNRECHOESECESSEtE S drtttne

Fig. 41 lapulse response of a differentiator of length §

A second application is dealing with two-dimensional systea de-
sign, which aight also be used in the preprocessing step of digi-
tal photograssetry:s design a lowpass filter of circular syaaetry
and of length 15x15 for the passband frequency wp =0.13x as well
as the stopband frequency wg =0,32x, The foraulation of the ap-
proximation problea is given by D. Fritsch (1982, 1983); 1in the
meantiae a comprehensive program package has been developed for
the design of digital amplifiers and filters to improve the con-
trast of the digital image or to remove nuisance frequencies., In
this program package the Leake algoritha serves as "systea tuner"®
that means to provide for the sinimus maximums error.

A sinple least-squares approximation using 100x100 sasples
within the frequency domain results into a maximum deviation of
e, =0,07 at the edges of the passband and stopband, respectively
(see Fig, 5). This means for the convolution, that every pixel
will be falsified about 7%, a nusber which cannot be accepted in
precise photogramsetric applications. The addition of 74 inequal-
ities formulated at the pass- and stopband edges only reduces
this nusber to Ep® €o% 0,04 and leads to an optimum error behav-

four in the pass- as well as a suboptimal one in the stopband
(see Fig. 5).
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The last example applies the Lemke algorithe in highly precise
quality control. As object serves a subreflector, which is ar-
ranged at the focus of the main parabolic antenna to achieve par-
allel electronic waves. Because the antennas are nowadays working
within the [GHz]-band, the shape of a subreflector has to be very
smooth with deviations of about 0.1-0.3 (am), The subreflector
looks as follows (see Fig. 6)1 {t has a diameter of about 2 (a)

378 39 56 o 87

Fig. 6t SBubreflector of a parabolic antenna

and a height of about 0.65 (m). 90 targets represent the samples
of its surface, which have been measured geodetically and photo-
grammetrically (D. Fritsch et al., 1984), As results of the bun-
dle block adjustments were obtained 3, =0.053 (ea), Gy 20,054 (an)
and61 =0.057 (mm), this accuracy was also in accordance with the
coordinates obtained by geodetic methods.

For the reconstruction of the subreflector a shaped circular
syapetry paraboloid has been used for a best-fit computation. The
maxisum deviation after the least-squares fit was ¢, 20,35 (ma),
which was not suited for the specifications. A change of the ob-
Jective function by means of 24 inequalities for- the outer ring
reduced this number to € =0.25 (mm)., By the way, providing for
the worst case is the optimum evaluation for the sanufacturer.

4. Conclusions

The use of algorithms to solve L. -approximations 1is not only
Justified in geodetic applications but also in photogrammetry.
Especially the sethod of inequality constrained least-squares is
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a powerful tool in geometric modelling. As far as digital photo-
grasaetry is concerned, it aight be used in data preprocessing
and data analysis. But it can also solve photogramsetric opti-
aization probleas and further applications, which could not be
discussed here.
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