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Abstract

During the last decade different procedures in digital terrain
modelling have been proposed using an elastic grid for the
description of the terrain surface., The determination of the
elasticity is performed by means of the minimization of curvature
in least sgquares approximations.

For that reason the paper reviews the methods employed and
introduces different curvature measures., Also the problem of
correct weighting of hybrid norms will be treated. Examples
demonstrate the goodness-of-fit of the approximations, if the
curvature measure varies in the objective function of the least
squares approach.
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1. Introduction

Modelling a digital terrain is subject of many contributions
during its three decades of history (H. Ebner / D, Fritsch,
1986). But following the trend it seems to be gbvious using local
procedures for an improved presentation of the surface such as by
local polynomials and triangles, respectively, or a combination
of both. .

A gquite elegant method to solve this task 1s.given by the
method of finite elements (FEM): in the meantime a powerful tool
to model complex structures in all engineering sciences. The
basic idea of the FEM uses elastic elements for the description
of surface data, whereby elasticity is determined by means of the
minimization of curvature measures in Jleast-sguares
approximations. Following this idea, the contributions of K.
Kubik (1971), G. de Masson d'Autume (1976, 1979), H. Ebner / P.
Reif (1978), H. Ebner (1979, 1983), G. Melykuti (1982) and P.
Reiff (1985) can be classified into this concept, in which an
elastic grid is used to model the terrain surface. The grid can
be composed of bilinear or bicubic elements; its elasticity may
be obtained by the minimization of a hybrid L, norm of residuals
of observed points and of additional curvature equations. But
there are tqo main problems in this approach

(1) which is the best curvature measure with regard to an
optimum local approximation?

(1i) what about the influence or smoothing factor(s) of the
curvature equations?

In the following different curvature measures will be
introduced, furthermore the determination of optimal smoothness
factors (global ones) is formulated as variance component
estimation (VCE) problem. Local smocothness factors can be
obtained by a simple trial-and-error method; some practical
examples prove the efficiency of this procedure.
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2. Terrain Modelling by Means of Simple Finite Elements

The finite-element-approach in digital terrain modelling is
demonstrated by the simple least-squares approximation problem
(see Fig.1 ): estimate the unknown grid height hj,j of grid point
Ps,j5 V i=1,2,...,m, j=1,2,....n by means of the observed height
hy of arbitrarily distributed points Pp V k=1,2,...,s and
additional equations of a curvature measure or approximations on'
it.

{ 1 [
tPs g s lPs Perqy s :

: i 1,3+1§ 1.J+1Pki 41,541 ax, = (xk'xi)/d' OSAxk < 1
e by = (¥gmy5)/d, 058y, <1
ip. iP. . P, . - - c -

:P\-I,J :PI.J =P1+1.J d = X541 = X5 = Y541 " Yj
( { (
| | t
S N S, __
1 1 1
Pi-1,5-1Pi,5-1  1Pie1, 51

Fig. 1: Definition of observables and unknown parameters

As curvature measures may be used:

(i) the "simple" formulation Ky, which is not invariant
against rotations

K;2 = (— + —) (1)
dax? dy2
(i1) the "“Laplacian" curvature measure
d2n d2h 2

dx? dy2
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(i1ii) the "total" curvature

d2n a2n a%n | 2
Kg? = (— + 2 + ) (3)
dax? dxdy dy2
(iv) " the "total-like" curvature
d2h 2 dzh 2 d2h 2 .
K42 =('—> + A ( ) + (——) (4)
dx? dxdy ay?
AcCN
(v) the "combined" curvature measure
1
Kg2 = K42 + — K2 (5)
2
(vi) the "energy" measure of an infinitesimal thin plate with
Poisson number v
. da2h a2n d2n |2
K(v) = K42 + 2V(-——--—- - I ) ) (6)
dx? dy2 dxdy

in which the Gaussian curvature is to be weighted with

V.
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The curvature measures (2)—-(6) are invariant against
translations and rotafions of the coordinate system and therefore
well-suited to describe terrain surfaces. In discrete
applications the second derivatives have to be approximated by
difference formulas (see Fig.2, J. Dankert, 1977)

a2 1 1 ‘-2 1 a2 1, 1
_— = . . * _— = — n
[}
dx2 m2 . -p- dy? n? ) -2
1
—m—
-1 1
2 t
d 1 n
= '
3
dxdy 4mn
1 -1

Fig.2: Difference formulas to be used in curvature measures.

Most of the contributions above deal with the curvature measure
Ky wWhich is approximated by its second differences in x- and y-

direction, and is only 4invariant against translations. The
observation equations of the resulting least-squares approach may
look as follows, if bilinear finite elements are used

hy + vy = ai,jhi,j + ai+1,jhi+1,j + ai,j+1hi,j+1 +
(7a)
agey, j+1hi+1, j41 Y k=1.,2,...,s

as well as
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a2n

( 2) + vxxlilj = hi—lcj —2hilj + hi"'llj
ax 1‘3
Y i=2,3,...,m-1 , Jj=1,2,...n (7b)
a2n
(— * Vyy.i,5 = Bg,3-1 7 2hg, g+ By 44y
dy2 ’
i,3 .
Yi=1,2,...,m |, 3=2,3,....,n-1 (7c)

whereby the second derivatives (second differences) are
considered as fictitious observables with observation values set

to zero.

3. Problems with Curvature Measures in Least-Squares
Approximations

s

Considering the observation eguations (7) in a Gauss—-Markov
model leads to

E(l) := E( ):= = x {8a)
and
1, p,"1 0
D(1) := D( ) = o2 (8b)
0 0 P, d

with the s*1 observation vector 1, and its corresponding residual
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vector v,;, the r*l1 residual vector v, of the fictitious curvature
observations,the s*mn matrix A of coefficients for the bilinear
interpolation, the 2(mn-m-n)*mn coefficient matrix B of
difference equations as well as the mn*l vector x of the unknown
grid heights; E is the expectation operator. Its dispersion D is
represented by the variance 02 of unit weight and the weight
matrices P; and P, of the observations.

This model serves as starting point for a hybrid least-squares
approach with objective function

“ Vi“2 + " v2“2 = min (9)
P, P

2

from which the following normal equations can be derived
( A'PjA + B'P,B ) X = A'Pyl, (10)

But the main problem in this procedure is the proper choice of
the weight matrix P,. There are different ways to come to an
estimation of this matrix depending on global or 1local
approaches.

A global procedure is the introduction of a smoothness factor

Y, so that (9) and (10) can be rewritten to

U Y

as well as

— A
( A'PjA + vy B'PoB ) x = A'Pjl, (12)

whereby '13'2 = I may be assumed in some applications. This factor

is a measure for the smoothness of terrain and might also be used
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for terrain classifications. Its determination can be formulated
as variance component estimation (VCE) problem, though there are
also trial-and-error methods which will lead to an optimum value.

A local approach can be found in H., Ebner (1983), who defines
variable weights simply by quadratic inverses of the second
differences, for instance

o
|

xx = (P, j)xx
( hjy,5 = 2hy 4 + hyyy, 4 )2

(13)

vy = (Pi,j)yy = )
(hj,j-1 - 2hy, g+ hy 441)

if the curvature measure K; is used to model the terrain surface.
The advantage of this formulation is that the roughness of
terrain is taken into account. This strategy of variable
weighting seems to be the right way considering inhomogeneity of
terrain, but moreover its smoothing effect has to be investigated
in detail.

3.1 Estimation of the Smoothness Factor

A powerful tool to solve this task is given by the method of
VCE. This procedure has been developed in statistics and is more
and more used for the improvément of dispersion in geodetic
least-squares problens.

Let the model (8) be reformulated to

E(1) = Ax (14a)
and
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V(l) = ¢ 21Q1 + 022Q2 := C (14b)

with A := [A',B']' ; its dispersion has been generalized into a

two-component variance model in which the o 21 and o 22 are

unknown and the (s+2(mn-m-n))*(s+2(mn-m-n)) matrices QiV i=1,2
2

a

are given by approximate values {0 as well as the weight

matrices Py

2 -1
0 0 0 a2, Py

(15)

An estimation of the unknown variance components may be
obtained by the following equation system (W. Férstner, 1985, K.
R. Koch, 1987)

S ¢ =w (16)

" A D Ao .
whereby ¢ :=[0 1¢ g 2] '+ the “quasi-coefficient" 2*2 matrix S
and its .corresponding 2*1 right-hand side w are defined by

s = (sy,5) = ( tr Lc™ipesc™ip ) (17a)
w= (wg) = ( tr[1'c™ipgsc™ip1]) (17b)
D=1I-4&¢(A'ctih )-1 xic? (17¢)

After the estimation of the variance components the smoothness
factor y is obtained -
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Y=562 , 52 (18)

4. Experience with Curvature measures

Forhdemonstration of the use of curvature measures the
following two examples (see Fig. 3) are dealing with flat and
rough terrain. Example (1) represents a flat tertain surface,
whereas (2) describes a rough terrain area.

Starting with (1) the upper figure contains the 1(m) contour
lines derived from the original data. Because of the data
acquisition by profiles the aim is here to eliminate the data
capturing effect.

A first smoothing with the difference equations of Kl is given
by Fig. (b). In this application constant weights p;=p,;=1 have
been used with roughness factor y =1.0 . The smoothing below (see
Fig. ¢) is derived by the curvature measure K4 with constant
weights P; for the observed points and variable weights p,
according to (13) for the difference equations;:; 1its belonging
smoothness factor is y=1.0. A comparison of the contour lines of
Fig. (b) and (c) shows congruity, what means, there is no
significant sign to switch over to more complex curvature
measures as well as to variable weighting. This is not in
contradiction with the expectations, because the second
differences do not vary very much.

Example (2):starts with 5(m) contour lines of the original
data. The first smoothing by means of the difference equations of
K; and constant weights P1=P,=1 as well as a smoothness factor.
Y =0.1 is represented by Fig.(b). There is a ‘"swing" effect
within the flat area, whereas the rough terrain has been smoothed
too much. A second smoothing with the difference equations of K4
and its corresponding variable weighting is given by Fig.(c), in
which constant weights for the observed weights and a smoothness
factor vy =1.0 was assumed. The "swing" effect in the flat area
is eliminated, whereas in the rough terrain characteristic
features have been maintained. This means, that roughness adapted
smoothing should be the right way to go.
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5. Conclusions

This paper presented some theoretical considerations on
curvature measures and the estimation on global roughness
factors. As far as curvatures are concerned in terrain modelling,
one should take care of translation and rotation invariant
measures. Furthermore, the estimation of roughness factors should
be realized also with regard to the classification of terrain.

Reconsidering the variable weighting approach it seems to be an
efficient toocl for maintaining terrain details. But also here
further investigations have to be made to combine optimum
smoothing with optimum detail representation.
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