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Summary. — When adjusting free geodetic networks, solutions of type MINOLESS (« mini-
mum-norm least-squares solution ») are widely used. While the (weighted) least-squares norm is chosen
in such a way that estimable functions of the (non-estimable) point coordinates become BLUE (¢ best
linear unbiased estimates»), the question remained still open of which (weighted) Euclidean norm
should be applied to the minimization of the solution vector, in particular, e.g., if orientation parame-
ters occur beside the point coordinates as it happens within triangulation networks.

For some typical choices of this norm the resulting parameter vectors are compared as well
as their appropriate dispersion matrices showing the respective point accuracy. The dual problem,
however, concerning solutions of type BLIMBE (¢« best linear minimum bias estimate ») is not yet
treated. Some interpretations of the theory are given by a small example.

(*) Presented at the 8t Symposium on Mathematical Geodesy — 5t® Hotine Symposium —
Como, Italy, September 7 -9, 1981.
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0. — INTRODUCTION

In order to get realistic information about the actual accuracy of geodetic
networks, P. Meissl (1962 ; 1965 ; 1969, p. 8-21) developed his famous «inner error
theory » consisting in an instruction how to compute the suited dispersion matrix
of the point coordinates. Since the contributions of E. Mittermayer (1971 ; 1972
a, b) it has become well known that identical dispersion matrices are obtained if
the parameter vector containing the coordinates is of type MINOLESS (¢« minimum-
norm least-squares solution ») ; in this case the dispersion matrix turns out to be
the (unique) pseudoinverse matrix of the normal equations matrix, sometimes also
called «stochastic ring inverse » as introduced by A. Bjerhammar (1958, p. 20)
or « Helmert inverse » as proposed by H. Wolf (1972 ; 1973).

One powerful method of evaluating the pseudoinverse matrix uses the so-called
« solution space» which means the «null-space of the singular normal equations
matrix ». This method has been described in full length by A.J. Pope (1973) as
well as by H. Pelzer (1974), but previously, e.g., by A.]. Goldman/M. Zelen (1964),
P. Meiss! (1969), and R.M. Pringle/A.A. Rayner (1971, p. 90-98; 1976) who at-
tribute it to R.L. Plackett (1950) justly, I suppose; a synopsis can be found in
the book of K.R. Koch (1980, p. 57-60). Notice that the required basis of the «so-
lution space» is readily obtained as far as geodetic networks are concerned, see
e.g. P, Meissl (1969), A.]. Pope (1973) and K.R. Koch (1980, p. 173-175); a re-
markable connection exists further with the S-transformations of W. Baarda (1973)
as shown by J. van Mierlo (1980).

If the unknown parameters are estimated in such a way that their dispersion
matrix results as that one described above, it gets the most important property,
too, of having minimal trace under all other possible dispersion matrices, thus se-
curing an even and, for the present, quite reasonable error situation with respect
to all parameters. However, this fact might become less satisfactory if the para-
meter vector to be estimated contains not only point coordinates but also orienta-
tion unknowns, e.g., as it happens within triangulation networks. In this case,
not the entire dispersion matrix is of interest, but mainly the block matrix corres-
ponding to the point coordinates and containing their variances and covariances.

Although this problem has been touched in part by P. Meissl (1969, p. 16-18),
it seems to be still far from being solved in a convincing manner, nervetheless.
Hence our approach shall contribute to a deeper knowledge about the changes
which the covariance matrix of the point coordinates will be subject to within
triangulation networks, if the weighied Euclidean norm is varied with respect to
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which the parameter vector has to be minimized after the performance of the
least-squares process. In particular, we shall investigate the following alterna-
tives to be applied to the normal equations :

(#) elimination of the orientation parameters, and afterwards minimization
of the coordinates in the (unweighted) /*norm (« classical approach ») ;

(#7) minimization only of the point coordinates in the (unweighted) />
norm, and afterwards minimization of the orientation parameters in the (un-
weighted) /2-norm as well («dual approach») ;

(¢¢7) minimization of the whole parameter vector containing both, point
coordinates and orientation unknowns, in the (unweighted) /-norm (« pseudoin-
verse approach ») ;

(#v) minimization of the parameter vector in a weighted /*norm (if it
exists) such that the covariance matrix of the point coordinates becomes the pseu-
doinverse only of that block of the normal equations matrix which belongs just
to the point coordinates («naive approach »).

The resulting parameter vectors as well as their appropriate dispersion matri-
ces are presented in a form suitable for some comparisons ; moreover, a necessary
and sufficient condition for existence is given in the case (¢v). The theoretical re-
sults are further cleared up by a small example where computational aspects are
treated, too,

Nevertheless, several questions remain still unsolved, particularly which norm
on the parameter vector would be responsible for minimizing the trace of the
covariance matrix of the point coordinates only. Furthermore, if taking in consi-
deration the equivalence between MINOLESS and BLIMBE (« best linear minimum
bias estimate»), see e.g. C.R. Rao (1971; 1972) or B. Schaffrin (1975), the
same problems arise concerning the respective norms ; e.g. the requirement « best »
standing for «minimal total variance » may be related only to the variances of
the point coordinates as well. However, this is beyond the scope of the present

paper.

1. — THE «CHOICE OF NORM» PROBLEM

Let us start with introducing some notations and describing the adjustment
model. As usually, we presuppose the Gauss-Markov model defined by

E(y) = dx, (1.1a)
D(y) = o*P— (1.1b)

where ¥ is the »x 1 observation vector, ¥ the unknown (% -+ 7) X 1 vector of fix pa-
rameters, A the nX (4 4 7) coefficient matrix, P the positive-definite 7 x # weight
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matrix, and ¢? the unknown variance of unit weight (« variance component ») ;
E denotes « expectation» and D «dispersion » of a random vector. Then by the
common procedure of « homogeneization »

y:=Phy, A:=P%A, (1.2)

E(y) = Ax, D (y)= o2l (1.3)

with [ being the identity matrix, and by the least-squares process further at the
«normal equations »

Nx—=b (1.4a)
with

N:=A'A=APA, b:=Ay = A'Pj. (1.4b)

Moreover, it is well known, confer e.g. K.R. KocH (1980, p. 170), that any
solution of (1.4) yields the wnigue BLUE («best linear unbiased estimate») of
every arbitrary estimable function, independently of the variance component o?
and even of the probability distribution of y at all. This fundamental theorem
turns out to be a straight generalization of « Gauss’ 2. Begriindung » by the help
of C.A. Aitken (1934) as pointed out by R.L. Plackett (1949). Therefore, in the
case of a simgular matrix N we are free, for the time, in reflecting which solution
of (1.4) we should prefer, perhaps the virtual reason why it is called « free adjust-
ment ».

As far as triangulation networks are concerned let us separate the parameters
contained in x into the #X 1 vector %, of point coordinates and the »x 1 vector x,
of orientation unknowns, leading to a corresponding partitioning of the normal

equations
Ny, Ni | x1:| bl}
[Nm, sz_[xz {bz ( )
with
Niy:= A/A; = A-;PA—, , bi:= Ay = A_;P_)_/ (1.5b)

for 4,7 e 1,2} and A = [4,, 4,]. Note that a comparable partitioning of 4 should
be possible for every other type of geodetic network, too.
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Since for free networks (thus without assuming fix points) the matrix N be-
comes singular, in fact, we have to decide upon the choice of g-inverse N— speci-
fying the general solution

by J (1.6)

A : _ B
D({ﬂl’\l}) :Gzl Ny, le} ::G{Cn» CIZ} (1.7)
X, Ny, Nl Co, Cyy

which proves to be itself a certain symmetric reflexive g-inverse of N respectively.
Such a specification may be performed by introducing a distinctive (weighted)
Euclidean norm with respect to which the solution vector has to be minimized ;
it is this what has been called the «choice of norm» problem.

2. — SOME ALTERNATIVE NORMS

Several alternative norms, whether composed or successive, have been col-
lected ; they are partly in use, depending on the purposes to which the adjustment
is carried out, and shall be further investigated in the following :

(¢) «classical approach »

., -0 0 x , .
[x1, %] 0 I:} [x:} = X; Xy = ||%,||* = min (2.1a)
=%, = NG (bs— Nyxy) (2.1b)

(i.e. elimination of the orientation parameters due to the regular inverse of N,,)

= Ny%, — NN Nyx, = b, — N1.NR%, , (2.1¢)
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but now subject to
S Y ) x
[, %;] [ J '
0

J:x;xlz | %, |2 = min
0

X s

(¢¢) « dual approach »

R B x , .
(%, %,] * Y= X% = || %, || * = min
0O 0 X

= Xy = I\Tﬁ(bl — N12 xz)
(N1 being the pseudoinverse of Ny,)

> Nogxy— Noy Nfi Nypxy = by — Ny N by,

but now subject to

. o]0 0] [x . .
[%1, %] Y = %%, = || %, ||* = min
0 Ir X9

(¢77) « pseudoinverse approach »

) [ 7 O 1T | = v v = 1212 = min
0o I Xy
19} « naive approach »
(2v) PP
2’Rx = || x |3 = min

where R has to be chosen such that both
Cyit =02 D(x) = Nf;
and
rk Cyy = 1k Na

hold (if possible).

(2.1d)

(2.2a)

(2.2b)

(2.2¢)

(2.2d)

(2.3)

(2.4a)

(2.4b)

(2.4¢)
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3. — COMPARISON OF THE RESULTS

In order to become able to compare the different suggested possibilities, let
us quote the respective solution vectors and their appropriate dispersion matrices,
distinctive for each «choice of norm ».

If defining

S;:=Nuyu—N;; N3' Ny, Syt =Ny — Ny Nfi Ny, (3'1)

as (generalized) « Schur complements » with respect to the partitioned matrix N
in (1.5), see e.g. R'W. Cottle (1974), we obtain for the particular cases :

(2) The «classical approach» (2.1) :
Solving
Si%, =b,— Ny, ]\Tz_zlbz (3.2&)

subject to
| %, | * = 2%, = min (3.2b)

yields immediately as solution vector

A

2%, = S{(by — N,. N3Z' by), (3.3a)
and by inserting this into (2.1b)
A
Xy = Nz by — Nz' NouST (b, — N1y N3t by) (3.3b)

or in comprised form

[}_[ Sy, — St N,y Ng! Hﬂ
=1 (3.4)

X Ngz'Nauw St Nz' + Ngp' Nuw St Nis Ni'| [0,
From this representation the appropriate dispersion matrix is readily obtained by
computing

R> K>
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D({&\l:l):od[ Sf- ’ _Sf—leNZl ] (3'5)
Ey ~—Nz'Nu St . Nz'+ Np' Ny St Ny, N3

2

However, since our special interest is directed to the covariance matrix of the
point coordinates because of the orientation parameters being only auxiliary quan-
tities, we try to express

Coy = o2 D(x)) — SF (3.6)

in terms of the pseudoinverse matrix N
At first, observe that for the rank of the normal equations matrix

rk N =tk Ny, — f 4- tk N, (3.7)

holds where the constant f reflects the degree of freedom lost if the orientation
of the network would supposedly be fixed ; it is easily seen that in the simplest
geometric cases f takes the values, e.g.,

f=1 for horizontal networks, {3.8a)

f=3 for 3-dimensional networks. (3.8b)
Thus we can conclude for the rank of the first « Schur complement »

S., 0

kS, — rk kN —
R r[o,szJ Fe e

Nllﬁ 12

}——rkN“:ran~f

2 =

_ rk[

21, 22

since the regular transformation

I)___lej\.';;l N11; le I » 0 . Sl, 0 (3 10)
0, 1 Z\Tzn Ny, —_]\72-212\721, I - 0, Nz '

does not influence the rank. This in mind, we can find a # X f matrix Z, fulfilling
the conditions
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tkZ, = f, ie.dim R(Z,) = f, (3.11a)
S\Z, =0, ie. R(Z) = N(Sy), (3.11b)
(I —NuN¥) Z, =0, ie R(Z) <R(Nu), (3.11¢)

which can be proved, e.g., along the lines of A.J. Goldman/M. Zelen (1964, p. 152,
Lemma 1) regarding

R(S) =R(4) = R(Ny) . (3.12)

Here N(.) denotes the « null space » and R(.) the « range » of a matrix. Hence
it follows immediately

NuN{(S.ST + Z,ZF) = N,y N{[S, . Z,] {;i} =SSt + 2,2 (3.13a)
with
tk(S,St + Z.ZF) =1k{S,, Z,] =1k S, + f=1k Ny\, (3.13b)
and consequently
Ny Nfi = 5.5t + Z.Z¢ (3.14)

as the due generalization of A.J. Goldman/M. Zelen (1964, p. 153, Lemma 2).

Now we are in a position to apply the famous theorem of P. Meissl (1967)
yielding

Cll—’ Nﬁ == STNIZTZ—INZIS_I‘- - (3 15 )
.15a
— (I — StNwT7'Na)Z\[ZNoT7 ' NaZa 17 Z{({ — N1T;*NauST)
where the matrix
T,:=N,, +- N, STN,. (3.15b)

is positive-definite and thus invertible with certainty.
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An alternate representation may be gained if we start from the relation

(Sl + Z1Zi'_)+ = S{F + lei'_ (3'16)

which can be verified by straight computation. This further leads to

Si'_ - (Nu_‘le Nﬂl N21 + Z1ZT)+—Z1Z# -
(3.17)
= [{ — N{i(N1:N5'Nyy — Z,ZFY N — 2,27,

respectively

T+
C11_A11 -

3.18
= N#(NuN5'Na — ZiZf)[I — NE(NuNg'Na — ZiZF) ] 'NY, — ZuZ3 (3.18)

provided that the inverse matrix exists!
Notice that Z, shrinks to a %1 vector in the case of horizontal networks,
allowing a particularly simple calculation of

22t = 222y (3.19)
By the way, a recently proposed procedure by K.R. Koch (1981) turns out

to yield actually the solution (3.4) with dispersion matrix (3.5), too.
(16 The « dual approach» (2.2) :

Here, solving
Sex, = b, — N, Nib, (3.20a)
subject to
Il %1? = %%, = min (3.20b)
yields the solution vector

A

%y = S5 (by— NuNiby), (3.21a)
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and by inserting this into (2.2b)
A
%y = Nfiby — N{iN,5F (b, — N, Nby) , (3.21b)

thus in comprised form

[ % J _ {Nﬁ  NENGSINGNG, — NEN ST } { b J (5.22)
Qz - S;-NHN;'; y S;_ bz
and for the appropriate dispersion matrix
D( [ %, D _ oo Nit+ NENLSIN N, — NiN ST (3.23)
N .
L Xy — SEFNNNH , Sz+

Note, in particular, that (3.23) differs from (3.5) according to G. Marsaglia/G.P.H.
Styan (1974, p. 441, Corollary 2) in consideration of (3.7) with f # 0. As imme-
diate consequence we obtain

Cu‘Nﬁ == NﬁNIZS;NHNH (3'24)

in this case.

(vi2) The « pseudoinverse approach» (2.3):
Since now we ask for the solution of type MINOLESS, we proceed as follows;

I Na , Na

where the pseudoinverse of the partitioned matrix can be written as

,bl
be

1 = [Al, A2]+y (3'25)

n> 8>

D'\t AF (I — A, B+
[Ay, A,]* = [+ DD AT ) (3.26a)
D'(I + DDy~ Af (I — A, B+) + B+

with

B:=(—4,4H4, (3.26b)



270 DIETER FRITSCH — BURKHARD SCHAFFRIN

and

D:=A}A,(I — B+ B), (3.26¢)

according to S.L. Campbell/C.D. Meyer (1979, p. 58, Theorem 3.3.3). The exploi-
tation of this formula yields

B=A4,— A, N}{N,,, (3.27a)
BB=N, —NuNiN,=S,, (3.27b)

and thus
D = Af A,[I — (B'B)* B'B] = N N, ,(I — S5S.,) . (3.27¢)

In full analogy to (3.9) we can conclude here, too, that for the second «Schur
complement »

Nu, 0
rkS,,:rk{ 0“ J—rkNu_
N11,N12
=1k — 1k N, =1k N,, — 3.2
I[Nzl,szJ tk Ny =1k Now —/ (3.28)

holds due to the relation (3.7) and a regular transformation dual to (3.10). There-
fore, we can construct a »x f matrix Z, now fulfilling the two conditions

tkZ,=f, t.e. dim R(Z,) = f, (3.29a)

$:Z, =0, ie. R(Zy) < N(Sy), (3.29b)

corresponding to (3.11a, b) ; the third condition has been omitted because of N,,
being regular.
In the same way as (3.14), it is easily shown that

I—SFS,=1—5,Sf=2,2% (3.30)
holds, implying

D=N{iN,L,Z,ZF, (3.31a)
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and consequently
(I + DD,)_I =[I + NﬁNmZz(Zz,Zz)_lzz’Nn Nt =
= I—NﬁN1222(Z£Z2 + Zz’Nzl Nﬁ]VﬁNnZz)flzz'Nleﬁ =
— [ —Gu(Z, Zy + G,Go) G, (3.31b)
with
G,:=N{N,, Z, (3.310)

due to a well known identity concerning the inverse of a sum of matrices; refer
to H.V. Henderson/S.R. Searle (1981), e.g., for a review.

Finally, by inserting (3.27) and (3.31) into (3.26a), resp. this in turn into
(3.25), we obtain the solution vector

%, § I —Ga(Z5Z2 + Gy Go) G AN b1 — N Ny » ST (e — N oy Nif 1)
96 T | SF(b— Ny NYby) + . (3.32)
B + 2222, + GyGo) T Gy N by — N N1uSF (b — Ny Nt by)}

which can be proved to fulfill the normal equations (1.5), in fact.
Note that its appropriate dispersion matrix is known to become the pseudo-
inverse

Af) -l ezl o
X, ; N21:N22 C21 » C22

with the upper left block matrix now readily found by

Cin = [I —Ga(Z37Z2 + GiGa) ™ G3) (N + N#iNuSFNuN) ([ — G (2322 + GG G3)

(3.34)

Note the difference again between (3.34) and (3.24), resp. (3.6) established
by G. Marsaglia/G.P.H. Styan (1974, p. 441, Corollary 2) if regarding formula
(3.7) with f # 0 as above.
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(ww) The «naive approach » (2.4) :
This case is a slightly different one in comparison with the others treated
so far, since now we have to secure, in advance, the existence of a reflexive sym-
metric g-inverse

Nu , N ™ N{}I , Ci
— (3.35)
Na , Na s Cu , Ca

with suitable block matrices Ci. = C; and Ca = Cj, according to (1.7) and
(2.4b, ¢), while observing rk C,, = rk N,;,. Note that this approach has some
relevance to optimization problems, too, see B. Schaffrin (1981).

Suppose, for the moment, that (3.35) holds ; then we conclude the necessary
conditions

[Nu , Nm] Z{Nﬁ ) ClZ} [Nu ) le}
N21 , sz, C21 ’ C22 ,Nzl y sz
[Nu s lel |:N12(C22N21+2C21N11)) N12(C22N22+2C21N12) }

N21 ) sz ZVZZ(szNzl ‘I‘ 2C21N11);N22(C22N22+2C21N12—A72_21 Sz)
+ [(N12C22+2N11C12) Nzl, (N12C22+2N11C12) sz }
(NZZCZZ ‘I_ 2N21C12> Nﬁl, (N22C22 ‘I_ 2N21C12—52N£1> NZZ
N11 ’ N12
=2 (3.36)
N21 » sz,

in order to be a g-inverse, as well as

e el -

Coi , Cuoll|Nw ., Nu Co , Cas

© N, NiNuCu] [Cu(NaCn + 2NaNf),  Cu(NaCw + 2NuCu)
{Cleuqu, Chs } [czz(szczlJernNﬁ), sz(szczerszcm);KJ

{(Clzsz‘l‘zNﬁle)Czly (C12N22+2NﬁN12>C22 W
(C22N22 + 2Cz1]\712> Czl ) (C22N22 + 2C21N12> sz_Kz_

Ni'i ) C127
=2 (3.37)
C21 » C22
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with

Ky, :=0Cy—Cu Ny Cy, (3.38)

in order to be reflexive. Then (3.36) implies the equalities

le sz ZV21 + le C21 1\711 + N11 Clz Nz1 =0, (3-393)
N12C22N22+N12C21N12+N11C12sz:O, (3-39b)
N22C22N22 + N22C21N12 + A721C12N22752 =0, (3~39C)

and hence, for reasons of symmetry,

N12C22N21 :_N12C21N11‘N11C12N21 =
:'—N12C21N12N2_21A721_N11C12N21 -
- 7N12 C21 N11‘N12N51A’v21 C12A721 -

= N12N3'S2 N5' Nat — N2 Coy Nie N Noy — N1z N3' Not Ca Now (3.40)
By putting these equalities skillfully together we obtain the relations
N;CySi=0=5,Ci: Ny, (3.41)
and altogether finally
0 = NuN3'S,N5'Nou = NieNg'Nu — (N1 .N5'Nyy) NE(N.NZ'Nyy) (3.42a)

or even equivalently, see e.g. K.R. Koch (1980, p. 50, formula (153.6)),

N,y Ni' = N, Ng'(N,, Nf) Ny N3t (3.42b)

as the fundamental (necessary) condition for the existence of a g-inverse of type
(3.35) ; it means that N, Nj| must turn out to be a g-inverse of N,, N3' in order
that (3.35) applies!

On the other hand, the g-inverse in (3.35) has to become necessarily positive-
semidefinite, and hence there exists a suitable » X# matrix F with
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AR [ AT AF(AYY , AFF N, Gy
- = (3.43a)
F4t) , FF Cu , Cyy

yielding immediately
NfiN,Cyy, =NiNyAT F' = AT F' = Cy, (3.43b)

and consequently with (2.4c) and (3.7)

tk K, — rk N Cu k Nt —
2= T Cn , Cas -t n
A R N Kk C
=r Na , Na, — 1k N, =1kC,,—f, (3.43¢)

according to D. Carlson et al. (1974, p. 170, Theorem 1), since K, is yet the second
« Schur complement » of the g-inverse in (3.35).

Moreover, due to (2.4c) the matrix C,, proves to be invertible ; thus (3.37),
if observing (3.43b), gives the particular equalities

C12 sz Cz1 + C12 Na N{'{ + ]Vﬁ ]\le Cz1 =0, (3.448.)
Ci2 Nay Caz + Ci2Na Cra + N{'{ N Cow = Cro — Nﬁ NuCe =0 , (3.44b)
Ca2 No2 Coy + Caz Nuy Cre + Co1 N1z Coa —+ Coy Ny Cro = Coe , (3.44C)

from which we conclude by applying (3.44) to (3.41)
51 C12 = _51 NﬁNmZVZI == leNilNleﬁArlzNz—zl—_N12N£1 =0 (3-45)

because of (3.42b), respectively with (3.43b)

CIZZNKN11C12: N$N12N£1N21C12 (3-463-)

confining the block matrix C,, = Af F' = C;. From (3.44b) directly, we get the
restraint
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Cio = — NN, N3' — €1, Ny, €, C5* N (3.46b)

and from (3.44a)

C12 N2y Cyy = — Cu Ny Nfi — N{i N3 Coy = Nfi N1, Cyy Ny NY (3-46C)

with the aid of (3.39a) and (3.43b) whereas (3.39¢) yields immediately

Copo=Nzg' —Nz'Nyy NN Ng' — Coy Ny N5t — N3' N,y Coy (3.46d)

Now we are in a position to show also that (3.42b) is sufficient for the existence
of a g-inverse of type (3.35), namely by constructing a particular one. For if the
restraints (3.46a, b, ¢, d) are closely scrutinized we may ascertain that they are
fulfilled by setting

F:= — N3'(4; + Ny, N{iA)) (3.47)
which gives in turn
Cio = F(AT) = — 2Nz N,y N (3.48a)
as well as
Cuo = FF = N3' + 3N3' Ny Ni Ny, N3t (3.48b)

note that here (3.42b) enters quite crucially. Now it is no more difficult to esta-
blish the matrix

N s _ZNﬁleNEI Nu , N~
i . ‘ i X ‘ ‘ = (3.49)
— 2NZ' Ny N, Npt 4+ 3N Ny NNy, NG Ny, Nooles

to be a reflexive symmetric g-inverse of the normal equations matrix, in fact, belong-
ing to the solution vector
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b
be

%l} — Nﬁ ) ﬁ2NﬂN12N£1 ]
9& — 2N Na N, |, Nz' 4 3NZ' Nau N{ Nia N33

1 (3.50)

To sum up thus we may state the following

THEOREM : The partitioned normal equations matrix N = [Ny] has a re-
flexive symmetric g-inverse of type

with 1k C,, =1k N,y if and only if

leNil == leNZI(Nle_lU 2\7121\751

holds, in which case (3.49) is one choice of it belonging to the solution vector (3.50)

4. — AN IMPORTANT INEQUALITY

Now we want to compare the various covariance matrices obtained by the
respective approaches. For this purpose define the matrices

Cin(@): =SF = (N;y,— N, Ng' Nyy)+ (4.1)
as in (3.6), (3.15a), or (3.18),
Cy (@) : =Nii + N{i N, S N, Ni 4.2)
as in (3.24),

Coa (118) 1 = [I —Go(Z3 Zy + G5 Go) G5 1N + Nfi N, S§ Ny N -
I —Go(Z: Z, + G, Gy) 1 G, (4.3)

as in (3.34), and
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Cu(tv) : = Ni;, provided that N, N3' = N, N3' (N, Nj,) N, N3!, (4.4)

as in (3.35) in connection with (3.42b).
Then we can establish by turns

Slcu(i)sx_slsfL S1251, (4'53')

51 Cu(ﬁ.) 51 — SxNﬁQVU _N12 NZI N2l> + Sx :vlt N12 S;_ ZV21 Nﬁ Sl -
=S —NuNz'S:Ng'! Ny +- Ny, N3t S ST S, Ng' Ny == S (4.5b)

because of

Sl ]\vﬁ 2\112 = Nsz\Vﬁlsz; (4‘6)
further with (4.5b)
51 Cu(iii) 51 = Sx(LVle + Z\’Tﬁ N12 S;— 2\721 Nﬁ) Sl = Sl (4'5C)

since

Sx[I“Gz(ZZ, Z, + GZ’G2)A1 G;] =S, — S, N 1\71222(2; Z,+ G;G2)—l G; =
= Sl 4N12 NEI Sg Zz(Zz, Zz + G; Gz)_l G; = Sl (47)

holds due to (3.29b), and finally

S, Cu(w)sx = (Nu——NmNEI N'zx) Nﬁ S, =
= Sx_ [le ]\751 _2\712 NEI(NM Nﬁ) N12 NZ—ZI]NH = Sl (4'5d)

thus guaranteeing C,, («) to be a (positive-semidefinite) g-inverse of the first « Schur
complement » for every « e {7, 71, 477, 1v{.

Unfortunately, at least C,, (¢#7) and C,, (iv) prove to be non-reflexive in consi-
deration of (3.9) for f # 0, and hence the classical theorem concerning the trace
of the pseudoinverse within the class of reflexive symmetric g-inverses, see e.g.
K.R. Koch (1980, p. 61, Satz (156.1)), is not applicable.

However, according to A.J. Goldman/M. Zelen (1964, p. 152, Lemma 1), we
can find a suitable matrix Z of full row rank fulfilling the conditions

tk Z —u—r1k S, i.e. dim R(Z) = dim N(S,), (4.8a)

S\Z=0=S{Z, ie. R(Z) « N(Sy), (4.8D)
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and consequently
514_51:51514_:[—*224'=[—Z(Z/Z)—IZ' (4.9)

in full analogy to (3.29a, b), resp. (3.30). Therefore we conclude for any positive-
semidefinite g-inverse ST

St = (St S)ST(S,.SH) =[I—Z2(<Z 2)~ 2SI —Z2(Z 2y~ 2'], (4.10a)
implying for the trace
tr St =tr ST —Z(Z'Z) 2" =tr Sy —tr ZZ+ ST ZZ+ = tr Sy (4.10Db)

since ZZ+S7"ZZ+ becomes positive-semidefinite, too. Now direct application of
(4.10b) leads to the important inequality

trCyy (1) = tr Cy, (o) for every a« e iz, 47, 244, i . (4.11)

On the other side, it is still an open question whether C,, () has minimal
trace also in the class of all block matrices C,, arising in (1.7), which would be
true if these block matrices C,, turn out to be g-inverses of S,, in any case. This
may be conjectured!

5. — AN EXAMPLE

Let us consider a very simple horizontal triangulation network, namely just
a triangle figured below. The observations are obtained from Table 1 with the
: standard deviations cair in [mgon]

y P and oa;s in [mm]. The approximate
2 coordinates are given by Table 2.
point x [m] y
P

1 1 30.00 40.00

P3 2 70.00 80.00

3 90.00 10.00

x

Fig. 1: A simple triangulation network TABLE 2: Approximate coordinates
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directions distances

from to

[gon] Gdir [m] Gdis
1 2 50.0010 1.0 56.576 7
1 3 129.5155 1.2 67.077 5
2 1 200.0005 0.5 56.566 3
2 3 132.2820 0.9 72.806 5
3 1 329.5175 0.8 67.087 5
3 2 382.2830 0.8 72.795 6

TABLE 1: Observations

For the evaluation of the fomulas derived in chapter 3 let us introduce the
(4 +7) X (4 4 r — q) matrix E’ with rk(E) = # 4 » — ¢ = 3, partioned for the
unknown vector x = [, x;], such that

1 0o 1 0 1 0 0 0 0
E=[E,,E,J;:=( 0 1 o0 1 0 1 0 0 0 (5.1)
—1 M X Y %

because the network may undergo two differential translations and one differen-
tial rotation. The third row of E contains the approximate coordinates related to

their « center of gravity » and a factor of dimension for the direction measurements,
respectively., With AE’ = 0 one gets the conditions

SlEizN”(NEXN“—I)E;:() (5.22)

SzE;:Nz; (NﬁNll—I)E;:O (5.2b)

From these it follows for E,:=[U;, z;) and E,: = [U,, z,]

as well as
Si12, =0, te R(z,) < N(S,), (5.3a)
Sezy =0, t.e. R(zy) = N(S,), (5.3b)

hence Eq. (3.1a, b) and Eq. (3.29) are fulfilled. Further we have to prove Eq. (3.11¢),
which can easily derived from Xy; = Xx; = 0, because in our case



280 DIETER FRITSCH —— BURKHARD SCHAFFRIN

Uiz,=0 (5.4)
is valid. With Eq. (5.4) and N,, U, = 0 it follows
z,€ R(U)) " = N(Nu)™ = R(Nu) (5.5)

and for z, = N; w with a certain vector w condition (3.11c) is also fulfilled.

With the previous considerations in mind the solutions for the different « free
net adjustments» can be taken from Table 3 and Table 4. For the solution (iv)
Eq. (3.42b) was not fulfilled, because

INGNG (I — (NaN{DNLNG) 2 = 0.365973 ,

and thus there exists no g-inverse as introduced in Eq. (3.35). As one can see, the
solutions for the unknown vector and the appropriate covariance matrices are in-
flueniced by the choice of norm. The important feature is the trace of the covariance
matrix for coordinate parameters only, also calculated in Table 4 for this example.

The computational aspects of the formulas derived in chapter 3 might be
of more or less importance to some readers, and so we will also discuss them brief-
ly. A main solution method for the computation of a pseudoinverse is the « Sin-
gular-Value-Decomposition » (SVD), however, for larger networks the run-time on
a computer will increase quickly. Thus the use of the matrix £, perhaps partitioned
for parts of the normal equations matrix, is recommended. Formulas for the com-
putation of pseudoinverses by means of the matrix E are collected by K.R. Koch
(1980, p. 56, 170), e.g.; from our formulas the exploitation of Eq. (3.15) cannot
be recommended because of its sensitivity against roundoff errors.

TABLE 3: Solutions for the unknown vector x

sc;lution
vector £
(i) (i1) (411)

T O —0.00003225 | —0.00003149 | —0.00003169
g B 0.00004083 0.00003326 0.00003525
S 3% —0.00000014 | —0.00000847 | —0.00000628
< —0.00007362 | —0.00007210 | —0.00007250
£ o 0.00003239 0.00003996 0.00003797
a8, 0.00003279 0.00003885 0.00003726

ER —0.00004035 | —0.00002580 | —0.00002969
¥ 36 -—0.00003978 | —0.00002532 | —0.00002912
-éﬁ 56, 0.00003676 0.00005122 0.00004742
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TABLE 4 : Covariance matrix for the coordinate parameters only (without o?)

solution Cn

1.07333855  0.10216959 —0.26499315 -—0.98904076 —0.80834540  0.88687116
0.10216959  0.14620378 —0.12601521 —0.15081253  0.02384562  0.00460875
. —0.26499315 —0.12601521  0.16685746  0.19153428  0.09813569 —0.06551907
() —0.98904076 —0.15081253  0.19153428  1.26562897 0.79750648 —1.11481644
—0.80834540  0.02384562  0.09813569  0.79750648  0.71020971 —0.82135209
0.88687116  0.00460875 —0.06551907 —1.11481644 —0.82135209  1.11020769

tr Cy; (%) 4.47244616
1.06882987  0.12424915 —0.24207987 —0.99581247 —0.82675000  0.87156333
0.12424915  0.15548016 —0.10206897 —0.12910974 —0.02218018 —0.02637042
N —0.24207987 —0.10206897  0.20831478  0.21265890  0.03376509 —0.11058994
(@) —0.99581247 —0.12910974  0.21265890  1.25657680  0.78315357 —1.12746706
—0.82675000 —0.02218018  0.03376509  0.78315357  0.79298492 —0.76097339
0.87156333 —0.02637042 —0.11058994 —1.12746706 —0.76097339  1.15383748

tr Cyy (73) 4.63602401
1.06993329  0.11926016 —0.24720667 —0.99419567 —0.82272662  0.87493551
0.11926016  0.14491774 —0.11729848 —0.13318731 —0.00196167 —0.01173043
—0.24720667 —0.11729848  0.18759037  0.20889574  0.05961630 —0.09159726
(27) —0.99419567 —0.13318731  0.20889574  1.25863033  0.78529993 —1.12544301
—0.82272662 —0.00196167  0.05961630  0.78529993  0.76311032 —0.78333825
0.87493551 —0.01173043 —0.09159726 —1.12544301 —0.78333825 1.13717344

tr Cyq (449) 4.56135549
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