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Algorithms in Fast Vision Systems

Abstract

Fast vision systems consist not only of performant hardware:
it is especially a chain of algorithms which makes fast vi-
sion possible. Therefore main interest has to be directed to
an algorithmization allowing different steps in data prepro-
cessing and data analysis.

The paper outlines some methods to be used in digital close
range photogrammetry. Two examples demonstrate the efficiency
of these methods.

1. Introduction

With the availability of CCD-sensors vision systems could be
made possible. These systems allow for automated object
tracking, object reconstruction as well as object monitoring
to name some tasks especially to solve in machine vision. All
these tasks implicate a chain of algorithms ranging from
sensor calibration via data preprocessing to data analysis.
With regard to real time applications the algorithmisation
should be as fast and robust as possible using adequate hard-
ware architecture such as image processors and transputers
(A. Grin, 1987).

Although camera calibration remains an object to be investi-
gated furthermore in detail (H.A. Beyer, 1987, R. Lenz / D.
Fritsch, 1989) main interest has to be directed to the data
flow in data preprocessing and data analysis. This implicates
automatically grey value manipulation and grey value evalua-
tion to be reviewed in more detail in the following.

2. Data preprocessing

In order to preprocess the digital image data (digigrams)-
for example to compute image gradients or to make the image
data more homogeneous - operators should be applied which
work as local as possible.

Let the image enhancement or restoration process be written
as

y(m,n) = ¢ [x(m,n)] Vm
n

ceee, M-1 (1)
N-1

87
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whereby ¢ characterizes the system or algorithm of the ade-
quate preprocessing. This system may be linear or non- linear
(e.g. median filter) depending on the processing step being
solved. Although there exist quite a lot of contributions on
linear time invariant systems (LTI-systems, L.R. Rabiner / B.

Gold, 1975, D. Fritsch, 1982) which allow 'system tuning' in
terms of exact approximation, priority should be given to
systems working as local as possible. This results into short
point spread functions or impulse responses h(m,n) to be used
as kernel in the convolution sum

K-1 L-1
y(m,n) = Z £ h(k,l) x(m-k,n-1) = h(m,n) * x(m,n) (2)
k=0 1=0

Because the impulse response h(m,n) of the system ¢ has to be
short (2) is also the implementation rule for data preproces-
sing. In order to care for zero phased y(m,n) it must be
shifted by (K-1)/2, L-1)/2 pixels resulting in

(K-1)/2 (L-1)/>
y(m,n) = I z h(k,1l) x (m-k,n-1)=h(m,n)* x(m,6n)
k==-(K-1)/, 1=-(L-1)/; (3)

One main problem in image preprocessing is the computation of
image gradients. These gradients are the skeletons of the
objects and may be used in object reconstruction processes.
But before to derive the gradient an image smoothing is ap-
propriate to be realized by lowpass filters.

A very simple lowpass filter is the moving average (MA) fil-

ter h(m, n)l] = 1 - thus its kernel for a 3x3 averaging looks
like
1 1 1
h(m,n) = 1/9 |1 1 1 (4)
1 1 1

Although this filter already contributes a lot to the homoge-
nization process of images, other filters can be designed
from known frequency responses (D. Fritsch, 1982, 1984, H.E.
Guangping, 1989). In order to consider the aspect of short
kernels system tuning algorithms such as linear complementa-
rity algorithms (D. Fritsch, 1985) must not necessarily be
applied.

2.1 Edge detection

For fast edge detection some kernels are known from litera-
ture (K.R. Castleman, 1979)

m differentiators
m Sobel, Laplace, Roberts or Kirsch
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The experience with these operators gives great benefits for
3x3 operators. A comparison between a simple analytical (3x3)
differentiator, the heuristic operators Sobel and Laplace, as
well as designed 4x4 and 5x5 differentiators (D. Fritsch,
1987) showed that there is a 'break' in gradient information
between length 4 and 5. Two of these operators (single diffe-
rentiator and Sobel) can be seen in Fig. 1

a) simple analytical

o) -1/2 o] o] o) o)
o) o) o] -1/2 o] 1/2
0 1/2 0 0 0 0
b) Sobel operator
1 2 1 1 0] -1
O 0 o 2 6] -2
1 -2 -1 1 o -1

Fig. 1: Differentiator templates

With particular regard to the vectorization of gradients a
postprocessing of the gradient may be appropriate. This post-
processing should eliminate 1local point information but
should not have much influence on the edge information. Also
here experience showed that non-linear filtering techniques
(e.g. median filter) can contribute considerably to homogene-
ous image gradients.

2.2 Line following

Within the process of line following, various algorithms can
be used to move along the ridge of a chain of grey-scale
peaks and capture all those image elements which represent
edges (P. Haberacker, 1985). A strategy which has already
proved itself in the field of digital photogrammetry (D.
Fritsch / G. Strunz, 1988, D. Fritsch, 1989a) is a line fol-
lowing algorithm which is purely pixel-oriented - it is cal-
led 'line following by windowing'. The principle on which
this algorithm works is illustrated in Fig. 2; the procedure
it uses is as follows

O. Define a window of size 1xl1 at a point P(m,n)

1. Compare the image elements within the window
with a preset threshold value and calculate
the centre of gravity

2. Store the image elements or at least the centres
of gravity belonging to an edge, then delete all
the grey values within the window
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3. Move the window towards the centre of gravity

4., Continue with step 1 if there is no gap:
otherwise go to O.

In this way, the window can move within the bounds of eight
directions.
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Fig. 2: Line following by windowing
2.3 Vectorization using approximating splines

For vectorization using spline functions, certain continuity
requirements can be imposed on the vectorizing function, so
that the individual sections of a curve can be joined to one
another with no gaps. What will be required is C,, C; or C,
continuity, depending on whether it is the function values,
the first derivations or even the second derivations that are
to tally when the curve is joined up.

Since the vectorization of edges generally constitutes a two-
dimensional approximation problem, suitable parametrization
should also be provided for the spline function applied. One
frequently-used form of parametrization uses the arc length t
(D. Fritsch, 1989b).

Let
z = z(x,y) = const. (5)

be a plane curve in IR?, further described by the discrete
pglred values.(go, Yo): (X1, Y1)+ «+«s (Xp-1,¥Yn-1), represen-
ting the position of the image elements. Using the chord
sections

ti ='V (x3-%x3-1)2 + (Yi-yi-1)? Yi=1,2,3,....,n-1 (6)

3
ty = £ ti, tg = O, 1 <k <n-1 (7)
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it is possible to approximate arc length t, so that (5) 1is
broken down into

x(t)
z = z(x,y) = const., =— (8)
y(t)
this being described in discrete form by the paired values
(tOl XO)I (tOI Yo): (tllxl)l (tll Yl): """ ’ (tn—llxn-—l)l
(th-1/Yn-1) -
If every reference point (image element) (tl, xi) or (ty, Yi )

is now treated as a node in an approximating spllne then 1n
accordance with (D. Fritsch, 1989b) a spline function g(t)
can be formulated, which can satisfy both

$(g"(t))2 at = min (9)
t
cn the one hand, and

=
i=o

IA
42}

n-1 [g(ti)-xi (10)

Oxi

on the other. The first condition ensures automatic C, conti-
nuity, while the second condition can control the smoothness
of the spline function g(t). This enables adherence to preci-
sion specifications ogyj - i.e. admissible deviations between
the smoothed function and the original value. To solve equa-
tions (9) and (10), the following Lagrangian function is set
up and the derivatives of each parameter are obtained:

min L(g(¢), \u): n- g(t) % : 2
godu :]t @W)m+x[z o +u—8r”)
o 1= Xt
This produces a spline
s(t) = pi,i+1(t) (12)
which is composed of the cubic polynomials
Pj(t)=aj+bj(t-tj)+cj (t-t;)2+d;(t-t;)3 tjst<ty,;  (13)

For calculation of the coefficients aj,bj,c;,d;, Vi, please
refer to the formulae stated in D. Fritsch (1989b).

To demonstrate the capabilities of this spline approximation,
Fig. 3 shows six different degrees of smoothness. In particu-
lar, note the variations of the specified precision tolerance
ar ( GXl), which at o, = 0.1 (m) reproduces the specified
curve with practically no loss of precision, and which at Or
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= 5.0 (m) reduces it to a straight line. This flexibility can
prove to be a considerable advantage in the vectorization of
object skeletons, where stretches of gentle curve have to be
concatenated with sharply-curved sections and vice versa. On
the other hand given that quadrangles and the like are ap-
proximated using straight lines only, the spline is useful in
offering a wide range of modelling primitives.
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3. Data analysis

The data analysis in vision systems is consisting of image
matching, point determination and object reconstruction or
object tracking. The integration of these steps is most re-
cently topic of contributions on digital photogrammetry (B.
Wrobel, 1987, H. Ebner et al., 1987, U.A. Helava, 1988). But
with regard to vision systems it is more appropriate using
fast methods (S.F. El1 Hakim, 1986, 1989, H. Haggrén, 1986),
leading to heuristic procedures which may depend on the prob-
lem to be solved. This implicates for image matching not to
use image correlation and least squares matching but to apply
robust procedures to detect target locations and to solve
target matching.

3.1 Target location

The methods for fast target location mostly depend on the
target pattern. When using circular targets two main strate-
gies lead to the centre of targets

m estimation of the center of gravity

m computation of best-fit ellipses within the
original image or in the image gradient

But before the centre of targets can be computed the targets
must be located automatically. For that reason some operators
can be used to search for a target pattern represented by a
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grey scale mountain and valley respectively. For the examples
below we used the moving average filter as location operator
because it is capable to reduce the noise level on the tar-
gets if any. The final centreing may be supported by a recur-
sion algorithm using a window of kxk pixel, in which for each
recursion 1=1,2,..., L the centre is computed. This value
has to be compared with the proceeding centre; if

AN
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Fig. 4: Window centreing

m;, ny - mp_q, np-17 < 1 pixel (14)

the optimum centre is found (see Fig. 4).

In some cases the centre calculation is not satisfactory
because changes of imaging conditions cause variable results.
It is more reliable to compute real ellipse centres (G. Zhou,
1986) .

Let be

a(xj-%g)2 + 2b(Xj-X%g) (Yi-Yo + Cc(Yi-Yo)2 = 1 i=1,2,... (15)

the constraint equation for an ellipse in which xj, yj repre-
sents the pixel location at the corner of the ellipse. Then
the parameters a, b, ¢ as well as the exact centre x5, Yo Can
be obtained by a least-squares fit using the centre coordina-
tes as approximate values. Another strategy for the deriva-
tion of ellipse centres is to find two diameters and then to
calculate this intersection which is the centre of the el-
lipse. In Fig. 5 ellipse centreing by means of least-squares
fits can be found - the experience showed that the exact
centres can be estimated with an accuracy of about
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1/20 < o0Oy,y < 1/10 pixel size (16)

Fig. 5: Best-fit ellipses
of targets

3.2 Target matching

The target matching problem can be solved using the collinea-
rity equations or the coplanarity condition. Each point in
one image (master) has to be matched with its corresponding
point taken by another camera (slave image). When using known
exterior orientation parameters the result is a straight line
(epipolar line)

Yo = aXjp + b (17)

in which the parameters a and b are given by the image per-
spectives. All coordinates of the slave image can be introdu-
ced into (17) and must be compared with a threshold T. If

A= axy, + b -y; < T (18)

the points match each other. Occasionally more than one tar-
get will satisfy (18) therefore the strategy may be reversed
to match a point in the slave image with its corresponding
point in the master image.
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3.3 Combined point determination and object reconstruction

If the image coordinates of the targets or other points are
known the coordinates of object space can be derived by
bundle block adjustment or simply by using the collinearity
equations in case of two images. As far as simple objects are
concerned, there is often object (prior) information avail-
able to be considered within the point determination process.
Therefore the point determination has to introduce all infor-
mations on the object itself leading to combined point deter-
mination. Especially in machine vision applications informa-
tion on the shape or surface of the object is often given.
This can be in form of analytical descriptions (e.q. cube,
paraboloid) or by digital surface models in case of more
complex structures.

4. Examples

For demonstration of the algorithms proposed in this paper
two examples will be treated

m reconstruct a cube of 20 (cm) side length
by means of three synthetic images

m reconstruct a subreflector by means of three scanned
analogous WILD P31 photographs

The first example served as 'study object' to check the algo-
rithmization whereas the second one was a real benchmark with
regard to robustness and modelling primitives.

4.1 Reconstruction of a cube

To reconstruct a cube of 20 (cm) side length three synthetic
digital images were generated considering a CCD-sensor of 245
H x 319 V pixels. The size of the digital image was supposed
to be 6.6 x 8.6 (mm) leading to a pixel size of about 0.027
(mm)..The location of the three synthetic CCD cameras can be
seen in Fig. 6

L
7 -1[m]-
7.

® 3

®1 R 2

Fig. 6: Location of the CCD cameras
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For the reconstruction of the cube two strategies are com-
pared with each other: the first one using image coordinates
of the targets and the second one using the image coordinates
of corners of the cube. The reconstruction of the cube makes
use of the condition equations

{(xk—xi)2 + (Yp-Yj)2 + (zk-zi)Z}z = é;§k| = a (19a)
—_—, —e
(Pin)(PiPk)
a = cos™1 = /2 (19b)

L (PiP5) (PiPy)

which have been considered partly within the bundle block
adjustment (eq. 19b). This implicates a chain of algorithms
given by Table 1 in which the original images (Fig. 7a) and
the image gradients (Fig. 7a-c) are used.

(a) (b)

(d) (c)

Fig. 7: Image 2 of the cube and its corresponding gradients
a) original image (b) gradient of simple
differentiator
c) gradient of Sobel (d) gradient of 5x5
differentiator
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Table 1: Algorithms to reconstruct the cube

step original images image gradients
1 target location by means vectorization by means
of the MA-operator of line following and

best-fit straight 1lines

2 computation of image computation of image
coordinates (centres of coordinates of the
gravity and best-fit corners of the cube
ellipses)

3 image matching using the image matching using the
master and its slaves master and its slaves

4 point determination by point determination by

bundle block adjustment bundle block adjustment

5 best-fit planes, inter- reconstruction of a
section of straight lines best-fit cube
and reconstruction of the
cube

The cube was reconstructed under the premise of different
signal/noise ratios (SNR); its side length and corresponding
standard deviation can be found in Table 2

Table 2: Reconstruction of the cube

SNR original images image gradient
a Oa a Oa

0 19.989 0.023 20.128 0.027

1 19.990 0.030 20.131 0.029

5 19.991 0.043 20.132 0.032

10 19.977 0.054 20.136 0.036

A comparison of the results gives clear advantages for the
use of target information in the original images, because the
geometry in machine vision applications is mostly poor. But
when using more than three CCD cameras optimization strate-
gies and here especially first order design to fix the camera
positions is highly recommended. The estimation of the accu-
racy of image coordinates a posteriori amounts to o=5.5x10"%
(cm) and corresponds to about 20% of the pixel size.
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4.2 Reconstruction of a subreflector

For the reconstruction of a subreflector three analogous
images of a WILD P31 camera with ¢=103.34 (mm) habe been
scanned with a Hell scanner Chromagraph CTX 330 with a reso-
lution of 0.01 (mm). This led to three digigrams of 120 MB
for each; one digital image can be seen in Fig. 8.

(a) (»)

Fig. 8: Digital image of the subreflector
a) global view b) detailled view

The targets used in the data analysis were twofold: on the
one hand circular targets could be identified consisting of
labels which number the intersection of meridians and paral-
lel circles (see Fig. b) and on the other hand these inter-
sections itself were the targets. The algorithmization used
for the point determination is given by Table 3.
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Table 3: Algorithmus for 3D point determination

step algorithm

0 identification of fiducial marks by means of
best-fit straight lines and its intersections

1 determination of the image centre
2 target location by means of the MA-operator
3a computation of image coordinates of circular

targets using the centre of gravity and best-
fit ellipses

3b computation of image coordinates of the inter-
sections of meridians and parallel circles by
means of best-fit straight lines and lower
order least-squares polynomials

4 image matching using the master and its slaves

5 point determination by bundle block adjustment

For the reconstruction of the subreflector a rotary parabo-
loid have been used to describe the 3D-point manifold analy-
tically.

With
y2 = 2px = 4fz (20)

as formula of a parabel of focus distance p/2=f, that is f is
the distance from the vertex origin, a surface depending on
RZ2 = x2 + y2 is to describe by

R = 4fz (21)

This is the formula of a paraboloid with its vertex fixed in
the coordinate origin. But (21) cannot be fulfilled in ma-
chine vision applications therefore it must be generalised
into
R2
2 = 25 - (x-%Xg)tan B + (y-yo)tan A + Zg (22)

that is the paraboloid has six datum parameters Xo, Yo, 2o
(translations of the vertex), A, B (rotations of the vertex)
as well as its focus distance f to be interpreted as the
scale of the paraboloid. These parameters must be determined
in the object reconstruction process. Using the least-squares
method a corresponding condition equation to (22) looks like
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zi+vzi+k=zo—(xi+vxi—xo)tanB+(yi+vyi—yo)tanA+ (23)

+(Xi+in‘Xoii+(Yi+Vvi'Yo)2

in which k 1is a constant value to overcome shaped parabo-
loids. This equation can be treated in correspondance with D.
Fritsch et al. 1989 leading to a Gauf-Markoff model

E(1) = 1 +v = Ax , D(1) = o¢2p~1 (24)

which characterises the least-squares descriptions.

The reconstruction of the cube on the basis of a rotary para-
boloid led to the parameters given in Table 4

Table 4: Reconstruction of the subreflector

parameter values
Xo 8317.826 (mm)
Yo 7155.638 (mm)
Zg 537.826 (mm)
A -0.000757 (rad)
B -0.000326 (rad)
f 514.964 (mm)
o 0.121 (mm)

Main interest in such applications is directed to the good-
ness-of-fit of the surface that is the perpendicular devia-
tion between the theoretical contour and the real contour
(see Fig. 9).

Pi (real)

Fig. 9: Projection of the deviation

P' (theoretic)

R

An estimation of an overall measure defined by RMS =
Viicospv||Z led to RMS = 0.114 (mm). In this way the subre-
flector is totally described.
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5. Conclusions

The experience with the algorithms proposed in the paper
gives optimism to realize fast vision system. Although some
algorithmic steps are depending on the special application
there is a basis software to be used in most applications. In
this context can be seen image preprocessing techniques such
as edge detection, line following and vectorization as well
as image analysis techniques consisting of image matching and
point determination. The main point in realization of algo-
rithmic chains should be directed to robustness and speed in
order to be competitive with non-vision systems. Even if vi-
sion systems have some disadvantages for example illumination
conditions and sensor depending errors they should be hardly
tested in a lot of pilot applications.
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