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ABSTRACT

Koch, K.R. and Fritsch, D., 1981, Multivariate hypothesis tests for detecting recent
crustal movements. In: P. Vyskoéil, R. Green and H. Milzer (Editors), Recent Crustal
Movements, 1979. Tectonophysics, 71: 301—313.

For detecting recent crustal movements repeated geodetic measurements are often ob-
served in a net of control points. These data are evaluated in a multivariate statistical anal-
ysis, in order to separate the set of control points into two disjunctive sets, the set of
fixed points and the set of variable points. The coordinates of the control points are
introduced as unknown parameters for the analysis of the observations at different time
epochs. However, the geodetic measurements often do not contain any information about
the translation, the rotation or the scale of the coordinate system, so that restrictions
have to be introduced to obtain estimable quantities. As shown, these restrictions must be
formulated for all fixed points, in order to obtain a location of the control net which is
optimal with respect to the detection of movements. But the fixed points have to be
found first by means of univariate and multivariate hypothesis tests. This problem is sol-
ved by a successive estimation and test procedure, which can be automated, so that in a
single analysis of the data the variable points are separated from the fixed points. As
shown by an example, the univariate and multivariate test procedures enable the detec-
tion of horizontal movements in the order of magnitude of the lengths of the axes of the
95% confidence ellipses.

INTRODUCTION

To detect recent crustal movements or deformations of man-made con-
structions, geodetic measurements can be applied. Usually these observations
establish a net of control points which are connected with that part of the
surface of the earth or of the construction where movements are suspected
to occur. Since only the relative movements of the points with respect to
each other can be detected, one tries to set up the control net in such a way,
that only a few points move compared to a majority of points which do not
change their positions with respect to each other.These points will be called
the fixed points and the points, which move, the variable points. Hence, the
set of control points has to be separated into two disjunctive sets, the set of
fixed points and the set of variable points.
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To solve this problem, the measurements for the control net have to be
repeated at different time epochs. If movements of control points between
time epochs have occurred, they cannot be detected, if the movements are
too small in comparison with the standard deviations of the observations,
which establish the control net. The detection of movements therefore
depends on the variances and covariances of the observations, on the kind of
measurements, on the configuration of the net and on the amount of move-
ments which occurred. As will be shown in the sequel, multivariate statistical
analysis pushes the possibility of detecting movements to the limit set by the
variances and covariances of the observations.

If the coordinates of the control points would be given in a three-dimen-
sional coordinate system independent from any movements which occurred,
it would be simple to find these movements by computing coordinate differ-
ences between different time epochs. It is therefore appropriate, to choose
the coordinates of the control points as unknown parameters for the analysis
of the observations. However, the measurements of the control net, usually
distances and angles or bearings, do not contain any information about the
translation, the rotation or the scale of the coordinate system. This informa-
tion is introduced by the approximate coordinates of the control points
which are assumed as given. With respect to this coordinate system the con-
trol net is translated, oriented or scaled. As will be shown, only the fixed
points should be used for this procedure. But the fixed points must be detec-
ted first so that the estimation of coordinates together with hypothesis tests
for fixed points are applied successively.

For the estimation of the unknown coordinates of the control points from
the observations at different time epochs two models are available, the uni-
variate model (Pelzer, 1971; Heck et al., 1977; Van Mierlo, 1980) and the
multivariate model (Koch, 1976, 1978; Hein, 1978). The former combines
the observations of all time epochs in one parameter estimation. The latter
uses one parameter and observation vector for each time epoch. The advan-
tage of the multivariate model over the univariate model lies in additional
statistical tests which are very sensitive to the movements of the control
points. For the multivariate model the setup of measurements must be the
same over different time epochs. But if changes of observations are neces-
sary, for instance if a control point has to be placed into a different location,
it is possible by additional measurements to transform the original observa-
tions into observations which can be analyzed in a multivariate model. This
is treated in more detail in Koch (1980b) together with a comparison of the
univariate and multivariate models. In the following a multivariate model is
applied to detect recent crustal movements.

MULTIVARIATE MODEL

Let a net of k control points be observed at p different time epochs with-
out changing the number n and the kind of measurements and their weight
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matrices. From these repeated measurements the unknown three-dimen-
sional coordinates of the k control points at each epoch have to be esti-
mated. The nonlinear relationship between the observations and the coor-
dinates is linearized by means of the approximate coordinates of the control
points. Since the movements which occur are small, identical approximate
coordinates are used for all time epochs, so that the n X 3k matrix X of par-
tial derivatives is the same for all p epochs. Let the 3k X 1 vector p; with
i€ {1, ..., p} contain the unknown three-dimensional coordinates x;;, y;;, 2;;

with j € {1, ..., k} of the k control points at the epoch i, thus:

B: = X1 Yiis Z1is oor Xkis Yiis zki|’ withie {1,...,p} 1)

These unknown parameters represent the corrections to the approximate
coordinates x;o, ¥j0, 2j0 Withj € {1, ..., k} of the k control points, which are
collected in the 3% X 1 vector B,, hence:

— !
Bo = 1%10, ¥10» 2105 --» XK 0> VR0 Zp ol (2)

Let the n X 1 vector y; with i €{1, ..., p} contain the observations of the
epoch i and the effect of the linearization. Because of the repetitions at dif-
ferent time epochs the observations are correlated, and it is assumed, that the
covariance matrix of y; and y; is given by C(y;,y;) = 0;;1, where I,, denotes
the n X n identity matrix. It is i, j € {1, ..., p} and the p X p unknown covari-
ance matrix £ = (0;;) is supposed to be positive definite. One could have
assumed C(y;, y;) = 0;;P~" with P being the n X n positive, definite weight
matrix of the observations, but by a simple transformation (Koch, 1980a,
p. 146) the covariance matrix o1, is obtained.

Under the assumptions given above the multivariate model for the un-
known parameters p; and the unknown covariances g;; is given with p =
|Bi, ....Bpland Y = |y, ..., ¥, | by

XB=E(Y) with C(y;,y;)=0yl, andi,j€ {1, ..., p} (3)

where the 3k X p matrix B contains the parameter vectors p; and the n X p
matrix Y the observations y;. E(Y) is the expected value of Y. It can be
shown (Koch, 1980a, p. 217), that the estimates of B; are obtained without
knowing the covariances o;;, which is a very advantageous feature of the
multivariate model.

As already mentioned, the observations of a control net generally do not
contain any information about the location of the coordinate system for the
parameters p;. The coefficient matrix X in eq. 3 therefore has not full rank,
but say rgX = q < 3k. The rank defect for instance is 3k —q =7, if only
angles are observed, since three translations, three rotations and the scale of
the coordinate system are unknown. To obtain estimable quantities in the
model (eq. 3) not of full rank, the parameters B,,; are introduced, which are
obtained by projecting the 3k-dimensional Euclidean space E3* onto the
q-dimensional subspace E?, where B,; is estimable. The projection is given
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by:
Bvi = (X'X)” X'XB; (4)

where (X'X)™ is a generalized- inverse of the normal equation matrix X'X.
The best linear unbiased estimate B,; of By; is given by (Koch, 1980a,
p. 171):

Boi = (X'X)7s X'y (5)
where (X'X)7s = (X'X)"X'X[(X'X)"]' is a symmetrical reflexive generalized
inverse of X'X.

An efficient way of computing (X'X)7, is given by means of the

(3k — q) X 3k matrix E, whose rows contain a basis for the nullspace N(X) of
X, i.e. XE' =0. If in addition one chooses a (3k — q) X 3k matrix B such

that:

rg| X', B'| = 3k (6)
one gets (Koch, 1980 a, p.59):

(X'X);s=(X'X+BB)'—E(EBBE)'E (7

The matrix B can be interpreted as matrix of the restrictions:

BB, =0 (8)
to be imposed on the parameters in order to accomplish the projection (eq.
4) or to identify the parameters by removing the singularity from the nor-
mal equations. Depending on the choice of B, different generalized inverses
(X'X)3s are obtained.

For control nets the matrix E can generally be given by purely geometrical
considerations, since it contains the changes the unknown parameters B; can
undergo without affecting the observations y; (Pope, 1971). With respect to
the coordinate system defined for the approximate coordinates o, the con-
trol net may undergo a translation, a differential rotation and a scale change
if angles are observed. In such a case one gets (Koch, 1980a, p. 174):

1 00 0 210 Y10 X10
, 01 0 —=4 0 X10 Yio
E' =
001 Yio X0 0 210 9)
100 0 220 Y20 X20

If the matrix E instead of B is introduced into eq. 7, one obtains the pseu-
doinverse (X'X)" of X'X with:

(X'X)"=(X'X+E'E)y'—E'(EE'EE')'E (10)
The projected parameters B.; are given by:
Be: = (X'X)" X' XB; (11)

and the best linear unbiased estimate ﬁe,- of p.; by:
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Bei = (X' XY X'y, (12)
CHOICE OF THE PROJECTION

It is a well known property of the pseudoinverse, that:

BuiBoi = BeiBe: (13)
Thus, when estimating the unknown coordinates by means of the pseudoin-
verse, the control net is translated, differentially rotated or scaled in such a
way, that the sum of the squares of the estimated coordinates, which are
corrections to the approximate coordinates, are minimized. By this proce-
dure the control net is located with respect to the coordinate system for the
approximate coordinates, so that this coordinate system defines the system
in which the parameters are estimated.

Although the choice of the projection (eq. 4) to obtain estimable param-
eters is arbitrary, the projection has to be selected such, that the differ-
ences of the coordinates estimated for different time epochs are caused by
movements and not by the projection. If between the time epochs points of
the control net have moved and if one uses the pseudoinverse to locate the
control net, then according to eq. 13 the variable points also contribute to
the translation, orientation or the scale of the control net, so that the esti-
mated coordinates are affected by the movements of the variable points.
Hence, fixed points only may be used to translate, rotate or scale the control
net. The location of the control net between different time epochs is then
influenced only by pseudomovements caused by the variances of the obser-
vations and by undetected movements. Thus, all fixed points have to be used
to locate the control net, in order to keep the influence of these movements
small.

Changes in the translation, orientation or scale of the control net are
completely eliminated, if in a univariate model only three unknown coor-
dinates for one fixed point are introduced for all time epochs. This is a
common procedure in the analysis of crustal movements. But undetected
movements of the fixed points are then treated as measuring errors which
cause pseudomovements of the variable points. As will be shown in the fol-
lowing, in a multivariate analysis the assumption that the fixed points have
identical coordinates for all time epochs is introduced as a hypothesis, to
detect variable points, and not as an assumption at the beginning of the
analysis as done in a univariate model.

In order to use fixed points only to locate the control net, one has to
eliminate from the matrix E the variable points of the control net, so that
the matrix B is obtained, formed exclusively by the fixed points. With the
3k X 3k diagonal matrix S, which contains on the diagonal zeros for the
coordinates of the variable points and ones for the fixed points one gets:

B=ES (14)
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The condition (eq. 6) for B is fulfilled, if there are at least 3k — g columns
in B which are not zero vectors. By substituting eq. 14 in eq. 7 the best
linear unbiased estimate By,; is obtained from eq. b. It can be shown (Koch,
1980a, p. 175) that for these estimates the control net is fixed with respect
to the coordinate system of the approximate coordinates such that the
squares of the coordinates estimated for the fixed points are minimized.

HYPOTHESIS TESTING

To divide the set of control points into two disjunctive sets of fixed
points and variable points, two hypotheses are introduced based on the
assumption that certain points are fixed points.

Let the r X 1 vector B;; contain r projected coordinates of control points
which are assumed to be fixed during the p time epochs. It is:

Hpy; = By; and HBy; = B; with i € (1, ..., p) (15)
where each row of the r X 8k matrix H contains except zeros one number
one at the appropriate place. In addition with B, = |By1, .., Bop |, By = 1Bo1, ..
Bbp |’ pf = |pf1’ weey pr‘ and Bf = IBfl, ceey prl one gets:

HB, = B; and Hp,, = B, (16)

Now the multivariate hypothesis is introduced, that r coordinates of fixed
points of epoch i equal the r estimated coordinates of epoch i + 1:

"

Br1s -ees Bep—15 Bspl = lﬁm, e pr’ ﬁnl 17)
or: )
HBy, = W with W = By, ..., Bep, Beal

against the alternative hypothesis that for at least one coordinate the iden-
tity does not hold. Applying the likelihood ratio test, one obtains Wilk’s
likelihood ratio criterion (Koch, 1980a, p. 251):

_ detQ (18)
det(Q + R)
with
Q= (Xp, — Y)'(XB, — Y)
and:
R = (Hp, — W) (H(X'X);, H')™ (Hp, — W)
In addition the trace criterion by Lawley and Hotelling:
T?=sp(RQY) (19)

is used.
The p univariate hypotheses following from eq. 17 are given by:

Brr = Beas oo Bt.p—1 = ﬁfp » Bip = Bey (20)
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The likelihood ratio test for these hypotheses leads with Q = (w;;) and
R = (r;;) to the test statistic:

(ris/r)
T, = —2 1 21
wii/(n —q) (21)
In addition the multivariate hypothesis is tested:
lﬂfl - ﬂf2’ Bf2 - ﬂf3’ seey Bf.p—‘l - prl = Ioa 0, casy 0| (22)

or:
HB, U=W withW=]0,0, ..., 0

The columns of the p X (p — 1) matrix U contain zeros except a minus and a
plus one at the appropriate places. The matrices Q and R for egs. 18 and 19
are obtained by (Koch, 1980a, p. 252):

Q=U'(Xp, — Y) (XB, — V) U
and:
R = (HB, U— W) (H(X'X);, H') \(HB, U — W)

The multivariate hypothesis (eq. 22) states, that r identical coordinates of
fixed points can be introduced for all epochs.
The p — 1 univariate hypotheses following from eq. 22 are given by:

Bii —Bio=0, B;s — B3 =0, ..., ﬂf,p—1 - pr =0 (23)

with the test statistics T; given by eq. 21. These tests can be derived from a
univariate model, if the measurements of two consecutive time epochs are
combined to determine coordinate differences.

If the hypotheses (eq. 17 or eq. 22) are introduced for the coordinates of
all fixed points which are used to form the matrix B in eq. 14, the matrix
|B', H'|is not of full column rank and the matrix H(X'X);.H' for eq. 18 and
eq. 19 becomes singular (Koch, 1980a, p. 178). This is caused by the fact,
that the coordinates B;; and B;; in egs. 17 and 22 fulfill the 3% — q linear
restrictions given by eq. 8. If m points have been used to form the matrix B
and if the same points are tested for being fixed points, only r = 3m — (3k — q)
restrictions can be introduced by egs. 17 and 22, in order to obtain together
with the restrictions of eq. 8 a set of linearly independent restrictions. With
these r = 3m — (3k — q) restrictions the matrix H(X'X);H' in eqs. 18 and 19
is regular and it does not matter which r coordinates of the m points are used
in egs. 17 and 22, the remaining 3k — g restrictions are automatically ful-
filled because of eq 8.

Hence, to apply the tests of eq. 17 or eq. 22 for the m points, used to
form the matrix B in eq. 14, only r = 3m — (3k — q) coordinates of the m
points may be introduced in eq. 17 or eq. 22. If additional points are tested,
all coordinates of these points have to enter into eq. 17 or eq. 22. If on the

)
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other hand less than r coordinates are tested in eq. 17 or eq. 22, because of
the additional restrictions (eq. 8) these tests are difficult to interpret and
should not be applied.

The multivariate hypothesis (eq. 17) together with the corresponding
univariate hypotheses (eq. 20) are more sensitive to movements than the
multivariate hypothesis (eq. 22) and the corresponding univariate hypoth-
eses (eq. 23), since eqs. 17 and 20 test coordinates and eqgs. 22 and 23
coordinate differences. To obtain comparable test results, a value of « = 0.01
is therefore used as significance level for eqs. 17 and 20 and o = 0.05 for eqgs.
22 and 23. The univariate tests are less sensitive to movements than the
multivariate test so that in cases where the univariate tests show inconclusive
results, the multivariate test gives the final answer. The likelihood ratio
criterion shows more resolution in the region of acceptance while the trace
criterion has more resolution in the region of rejection with hardly any over-
lap, so that both test statistics complement each other very well.

SUCCESSIVE TEST PROCEDURE

To detect the variable points in the set of control points, one starts with
the assumption, that all control points are fixed points. All control points
are therefore used to form the matrix B, so that S in eq. 14 becomes the
identity matrix and the coordinates are estimated by means of the pseudo-
inverse (eq. 10). Then the tests of eqs. 17 and 22 are applied for all control
points by keeping in mind that only r = 3k — (3k — q) = ¢ coordinates may
be introduced. By means of the significance level a it is then decided to
accept or to reject the hypothesis.

In the case of rejection one has to remember, as mentioned in the previous
chapter, that the hypotheses eqs. 17 and 22 for detecting fixed points have
to include all m points used to form the matrix B in eq. 14 or more than m
points. Hence, a minimal number m,, of fixed points is selected which show
the smallest amount of movements in their coordinates estimated by the
pseudoinverse. The number m,, is determined by 3m,, > 3k — q. These m,
points are used to form the matrix B and the coordinates of the control
points are estimated by eq. 5. Then additional fixed points are determined
by eqgs. 17 and 22 and can be used as an alternative choice for the minimal
number of fixed points, to confirm by eqs. 17 and 22 the first selection of
fixed points.

The fixed points which are found are then used again to form the matrix
B, since all fixed points have to be used, as mentioned in a previous chapter.
Again the coordinates of the control points are estimated and again addi-
tional fixed points are sought by the hypotheses eqs. 17 and 22. The
sequence of points to be tested is selected according to the increasing average
ratio of the movements between the epochs and their standard deviations
computed from the estimates of one epoch. This successive estimation of
coordinates with the tests for fixed points stops when all fixed points are
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used to form B and all hypotheses for additional fixed points have to be
rejected. The successive procedure can be easily automated, so that in one
analysis of the data the set of control points is separated into the set of fixed
points and the set of variable points.

EXAMPLE

As an example test results shall be given for a control net which is shown
in Fig. 1 and which was established to detect horizontal crustal movements.
The distances between the control points vary between 2.5 km to 8.8 km.
The net is observed by distances with standard deviations of about 1 cm and
by bearings with standard deviations of about 0.0003 gon. To find out,
whether small movements are detected by the successive test procedure, ob-
servations for three time epochs are generated with the standard deviations
given above and by introducing movements for certain control points.

For the results shown in Fig. 1 the points 3 and 7 were moved by 2.5 cm
between epoch 1 and 2 and between epoch 2 and 3. The movements are of
the order of magnitude of the axes of the 95% confidence ellipses given in
Fig. 1 for the estimated coordinates of the control points. The directions of
the displacements almost agree with the directions of movements obtained
by the estimated coordinates and shown in Fig.1 by solid lines for the
movements between epoch 1l and 2 and by dashed lines for movements
between epoch 2 and 3.

TABLE I

Test results when using the points 2, 4, 6, 8, 9, 10 for the translation and rotation

Additional Test of eq. 17 Test of eq. 20
fixed points

A 1%p T2 1%p T, T, T, 1%p

0.67 0.49 0.44 0.82 0.92 0.77 1.39 2.73

5 0.53 0.45 0.75 0.97 1.30 1.49 1.35 2.57
1,5 0.44 0.40 1.02 1.10 1.33 1.67 1.78 2.44
1,5,7 0.24 0.37 2.14 1.24 2.83 3.38 2.41 2.34
1,3,5,7 0.09 0.34 4.86 1.57 6.19 6.63 4.58 2.28
Test of eq. 22 Test of eq. 23
A 5%p T2 5%p T, T, 5%p
— 0.87 0.65 0.14 0.49 0.46 0.64 2.05
5 0.80 0.61 0.24 0.57 0.89 0.62 1.96
1,5 0.74 0.57 0.33 0.66 0.99 0.82 1.89
1,5,7 0.56 0.54 0.69 0.74 2.01 1.10 1.83
1,3,5,7 0.32 0.50 1.57 0.83 3.94 2.10 1.80
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Fig. 1. Control net with 95% confidence ellipses and vectors of movements using the
points 2, 4, 6, 8, 9, 10 for translation and rotation.

Using the pseudoinverse to estimate the coordinates of the control points,
the hypotheses eqgs. 17 and 22 that all control points are fixed points have to
be rejected. The differences of the estimated coordinates indicate that points
4 and 6 did not move, so that they are used to translate and rotate the con-
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Fig. 2. Control net with 95% confidence ellipses and vectors of movements using the
points 1, 2,4, 5, 6, 8, 9, 10 for translation and rotation.

trol net, i.e. to form the matrix B in eq. 14, The tests of eqs. 17 and 22 con-
firm 4 and 6 as fixed points and indicate that in addition the points 2, 4, 6,
8, 9 and 10 did not move. These points are therefore used for the translation
and rotation and the coordinates of the control points are estimated. The
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TABLE II

Test results when using the points 1, 2, 4, 5, 6, 8, 9, 10 for the translation and rotation

Additional Test of eq. 17 Test of eq. 20
fixed points
A 1%p T? 1%p T, T, T, 1%p
— 0.40 0.40 1.16 1.10 1.73 1.49 2.39 2.44
7 0.22 0.37 2.34 1.24 3.34 3.32 2.93 2.34
3,7 0.09 0.34 4.78 1.57 6.15 6.21 4.84 2.28
Test of eq. 22 Test of eq. 23
A 5%p  T? 5%p T T, 5%p
— 0.71 0.57 0.38 0.66 0.88 1.09 1.89
7 0.53 0.54 0.76 0.74 1.97 1.34 1.83
3,7 0.32 0.50 1.55 0.83 3.69 2.22 1.80

vectors of movements and the 95% confidence ellipses for the (x, y)-coordi-
nates of the control points are shown in Fig. 1. By only judging from the
amount of movements, the points 1, 3, and 7 could have moved. But the size
of the 95% confidence ellipse for the point 1 indicates, that the movements
of 1 might have been caused by the variances of the measurements. Indeed,
despite the small amount of movements, which were introduced, the tests of
eqgs. 17 and 22 together with the univariate tests of eqs. 20 and 23 clearly
indicate, that the points 3 and 7 are variable points. The test results are col-
lected in Table I where the lower 1% points for eq. 18 and the upper 1%
points for egs. 19 and 21 when testing eqs. 17 and 20 and the lower 5%
points for eq. 18 and the upper 5% points for eqgs. 19 and 21 when testing
eqgs. 22 and 23 are given. The percentage points are taken from Kres (1975).

Finally the fixed points 1, 2, 4, 5, 6, 8, 9, 10 are used for translation and
orientation and the tests for fixed points are applied. The results are given in
Table II. They confirm, that the points 3 and 7 are variable points. Their
movements between the two time epochs together with the movements of
the fixed points are given in Fig. 2, where again the movements between
epoch 2 and 3 are indicated by dashed lines. The movements shown in Fig. 2
are smaller than the ones in Fig. 1 which demonstrates that all fixed points
have to be used to translate and rotate the control net.

CONCLUSION

The developed method of analysis uses univariate and multivariate tests to
detect successively fixed points in a set of control points, which are then
used to improve the translation, the rotation or the scale of the control net,
so that the coordinates estimated for the fixed points become independent
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of the movements which have occurred. The successive procedure can be
combined in one analysis of the data, and it is very well suited, as shown by
the example, to detect horizontal movements in the order of magnitude of
the lengths of the 95% confidence ellipses.
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