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Abstract

The term ' multivariate data analysis ' is mostly referred to the subject
of multivariate statistical inference. In the contrary also multivariate
solution strategies can be applied to be considered by this paper.

The paper starts in its first part with array algebra - a strategy known
since the sixties. Although the frame, in which array algebra can be applied,
is very static there are applications well suited for this solution strate-
gy.

The second part deals with multigrid methods. This strategy is able to
solve large systems of linear equations with a minimum of computational ef-
forts in time and storage.

Some examples prove at a time the applicability of the two solution stra-
tegies given by this paper.

1. INTRODUCTION

In order to solve least squares problems geodesists and photogrammetrists
are well aware in dealing with large systems of linear equations. The algo-
rithms according to Gauss and Cholesky are well known and well researched,
so that these algorithms form the basis for solution strategies which over-
come thousands of unknown parameters. Many contributions have been given in
the past dealing with new variants and approaches (H. Wolf, 1978, P. Meissl,
1982, K.R. Koch, 1987) to reorder and to solve linear equation systems.

Most of these contributions considered problems in net adjustment which led
to sparse matrices.

But as far as other applications are concerned, for instance digital image
processing and object descriptions, one does not always have sparse matrices.
The advantage here is that some problems have underlying regular discretiza-
tions which can be decomposed in a multivariate sense. For that reason two
multivariate solution strategies are introduced in the following to show up
the efficiency using elementary mathematical descriptions.

2. TFUNDAMENTALS OF ARRAY_ALGEBRA.

The subject of array algebra has been dealt with already in the sixties,
when elementary considerations on the Kronecker product were given { H. Neu-
decker, 1969). At that time the name ' array algebra ' was not yet known -
mathematicians called the underlying solution strategy ' Kronecker decompo-~
sitions '. Since the seventies U.A. Rauhala gave comprehensive considerations
on Kronecker decompositions (U.A. Rauhala, 1974, 1977, 1980, 1981, 1986).

He introduced a new formalism to get in touch with multivariate problems. It
is this new formalism which he gave the name ' array algebra '. Because of
its fascinating possibilities to solve linear equations very efficient, also
other authors dealt with array algebra (G. Blaha, 1977, R.A. Snay, 1978).
Even if array algebra seems to be quite elegant some criticism should be
pointed out in the way, that besides some special applications it could not
become as important as other classical techniques are supposed to.

But nevertheless, when working in a special hardware environment it can

*
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contribute much in some cases to
* parallelisation techniques
* golve linear equation systems
* gsolve fast transforms in frequency domain.

In Fig. 1 a typical hardware configuration can be found to be used in digi-
tal image processing and digital photogrammetry.

¢ Hardware
. . . Winchester
Digitizer Optical Disk |- Disk and
: \ 0 Magtape
Scanner Central Processing Array-Processor
or d N Unit d ) or
CCD-Sensor | 7 (CPU) Y 7l Transputers
ST N
Printer/Plotter Alphanumerid/ Hardcopy Unit
Graphical Screen

Fig. 1: Recent hardware environment in photogrammetry

Therefore, application fields of array algebra of today are

* signal processing (filter design, fast fourier transforms, convolu-
tions)

¢ least squares approximations (finite element approaches, data snooping)

* digital image processing (contrast improvement, edge detection, image
matching)

* robotics (pattern recognition, object reconstruction).

2.1 Mathematical approach

The application of array algebra is most efficient if gridded data have to
be evaluated. The size of the grid most not necessarily be regular - in
Fig. 2 three forms of gridded data can be seen.

(i) uniformly gridded (i) imegular spaced grid (i) grid in polar coord. —

I IR ‘::::: //‘.\\\

Fig., 2: Gridded data
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There is no restriction using array algebra on two-dimensional grids only -
the higher the grid dimension the more efficient is the approach.

Before going into details of array algebra its main advantage should be
explained: The Kronecker separability. In numerical mathematics the Kron-
ecker product B is defined as follows
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By the way a very simple example will illustrate the use of the Kronecker
product: Let be given

1
G = 1

then GeH results into the matrix

6

10
12
20

A N OB N
o W v w

16

With the following rules for the Kronecker product in mind

(GeH ) =G = H " {ranspose " (2a)
(G1 B G2)(H1 B H2) = G1H1 B G2H2 " multiplication " (2b)
(G1 B G2) BG, =G & (62 B G3) " associative " (2¢)
(6, = G2)—1 = GIl n.Ggl " inverse " (24)

least squares solutions can be reformulated as demonstrated below.
Let us solve an example in approximation theory which allows Kronecker
separation. The corresponding Gauss-Markov model is

2 _ -1 -1 -1
E(l) :=1 +v=2~Ax= (Ax B Ay) x , D(1) :=0d"P " = U%Px =B Py )

(3)

it leads to the least squares estimation formula

% = (A'PA)_lA'Pl (4)
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Using the rules for the Kronecker product (2) then (4) results into

o [ ' -1 1 ' ‘
[(AxmAy)(Pany)(AxaAy)] (Aquy)(mePy)l

o
]

1]

-1
1 |l | ' b
[(AxmeAyPy)(Aany)] (Axpngypy)l
[A'P A =mA'P A
XXX yYV¥
-1 -1
! 1 t t
[(AXPXAX) n(AyPyAy) ](AxmeAyPy)l

171arp ma’p )1

'11 1 -1,
[(A;PXAX) AxPxﬂ(AyPyAy) AyPy]l (5)

The problem here is to avoid the computation of the Kronecker product. It is
well known (H. Neudecker, 1969) that the:vectorial linear equation (AmB)y
can be expressed by a linear matrix equation BYA' with

Y93 Y32 =v* Yi1n

=vec Y =V Y21 Y22 T y2n = [ ]
y= = vec = Y9993 ¥ 1Yo

Ymi Ym2 Yinn (6)

Reformulating the model (3) delivers

-1

¥ ) (7)

-1
-— - 1 -
E(L) :=L +V = AyXAx , D(L) = Zm(Px 13

for which the following least squares solution is obtained

X = (A'P A ) *A'P LP A (A'P A )t (8)
Yyy Yy X X X X X

3
3

The equivalence and computation of (5) and (8) is demonstrated by a further
example. Let us search for an approximation

1 1

z = z{x,y) , z= 3 I c xpyq (9)
p=0 g=0 Pa

©tn i

to be derived within a regular discretized grid. The observation equations
obtained are

vy X %00 211 v, | :
1oy, % XY, 0 T T e P ;
1oyy ox oxyglt FTe 25| Vi3
ar=|t T T2 N 11 %21 Vo1
oy X X9 Z3 Voo
(1 vy %, xyg) | Za3 ] | Va3

(10a)
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These observation equations can be Kronecker-separated according to (A mA )x=
Lovessh XA=LaV : v

1 Xy i
1 x2 ¥y
A =1, X4 , Ay ={1 y,| ., |Proof: A=A = Ay (10b)
1 vy
_1 X, L 3
X = Coo Clo , L = le 221 231 241 , vV = Vll cvsese V41
o1 - ‘11 %12 %22 %32 42 Viz vt Vaz
13 %23 %33 a3 Viz ot Va3

The main advantage of the Kronecker separation is to avoid the Kronecker
productwhich has to be demonstrated for the example introduced before. In
" Fig. 3 the computational effort is given with and without using the Kron-

ecker product. It can be seen that avoiding this product saves computing

time and space.

(i) with Kronecker product (ii) without Kronecker product

e =

- number of multiplications

48 for KP 24 last products
48 for solution 12 first products
96 inall 36 inall

- storage space
48 for KP-matrix 6+12+8
12 for right hand side
60 inall 26 inall

Fig. 3:> Computational effort for the example

The term ' array algebra ' is now referred to rules when vectors and mat-
rices are converted into arrays in the sense, that a k-array is a vector
whose components are (k-1) arrays. This leads to arrays of different size,
for example in

IR1: one - array (" vector ")
R%:  two - array (" matrix ") (11)
IRk: k - array

As shown before, the conversion of vectors into matrices and vice versa in
R2 is carried out by means of the vec-operator

R?: x = vec X , l=vecl , v=vecV (12)
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But as far as higher dimensions are concerned more general rules have to be
introduced. One general rule given by U.A. Rauhala is the ! R-matrix ' multi--
plication (R=Rauhala).

Let be ¥ a k-dimensional array

x=< G Gy wene s Gk} L “(13a)
with

X = ( )

*§1,i2, .... ik

and the dimensions

o(X) = Moy, evee s m
O(Gi) =m ,n, - (13b)

o(L) = Ny ol seee s T

then the R-matrix multiplication is defined as

n n2 nk
2y B(1)47518@) 0500 -8R gy

z
jl=1  j2=t  .... jk A

*41,i2, vov. ,ik

1152 .... ik
i <r< =
1<i <m_, 1<r<k , G, (g(r)ij) (14)
With reference to the example above in which we had
. %= (GlnGz)l . (15)
for the linear vector equation and
X = ! 16
X = G,LGJ (16)

-1
for the linear matrix equation with substitutions G :=(A'PxAx) A;Px,
G2:=(A§PyAy)'1A§Py the corresponding array algebra notation 1s

X = <G1,G2> L

According to the rules of R-matrix multiplication cne gets the following c0m4A
puting formula

X = <6, 1>K1,6,> L} (18)

The efficiency of array algebra is proven by the following example from digi-

tal signal processing:

Design a lowpass filter from regular distributed 100x100 discretization
points within the frequency domain. The number of filter coefficients should.
be K=L=33 which means the filter has rotational symmetry with uk=u1=l7 unknown
parameters. Furthermore, the passband frequency wp=0.07*2ﬁ and the stopband
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frequency @ =0.16*2r have to be considered. The results of the correspon-
ding approximation problem are given in Fig. 4. .

a) frequency response b) approximation errors

- linear scale - - log scale -

Fig. 4: Design of a lowpass filter

In order to show up the advantage of using array algebra only the normal
equation system is reconsidered. Without array algebra notation one has to
solve a normal egquation matrix

o{A'PA) = 289 x 289 , resulting from (108)
19a
o(4) = 10 000 x 289
Using array algebra these numbers are decreased to
of(A'P A ) = o(A'P A ) = 17 x-17 resulting from
X X X YyYy ! ne (19b)

o(Ax) = o(Ay) = 100 x 17

This gives clear benefits in the way that we have less computational effort
in filter design -and round-off errors are kept minimum.

2.2 Critics and outlook

This short excursion on array algebra showed that it can be very efficient
in case that fixed discretization structures are available. If we do not
have these regular discretization schemes then the computational efforts are
increasing. This increase results from switching over from the array algebra
structure to irregular structures and is in some applications considerable.
Therefore, it is not recommended to solve nearly every problem by means of
the Rauhala-approach - very often it existsalternatives leading also to less
computational efforts, for instance, sparse matrix calculus and multigrid
methods. But in some cases one can combine array algebra with efficient mod-
els used in economics, so that its potential may be broadened to solve approxi-
mation and statistical problems.
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3. MULTIGRID METHODS

The multigrid method is a highly efficient iterative process for the solu-
tion of large sparse systems of linear equations. It has been developed
during the beginning of the seventies and is being more and more applied in
aumerical mathematics, physics and engineering sciences.

The rate of convergence of this iterative procedure is independent of the
size of the problem. Consequently the computational effort for the solution
increases only linearly with the number of unknowns. A comprehensive review
on multigrid methods can be found in W. Hackbusch/U. Trottenberg (1982) -
application in DTM-generation has been given by H. Ebner/D. Fritsch (1986). .

The main approach of multigrid methods is, that it iterates linear equation '
systems on grids of different grid size (see Fig. 5). It uses the fact that
iterative procedures converge fast for the high frequency part of the solu-
tion but converge slow for the lower frequencies. For that reason they are
called ' smoother '. If the lower frequencies of the dense grid are mapped
onto a coarser grid we will have the high frequencies of the coarse grid and
so on. This mapping is demonstrated by Fig. 5, in which four grids can be
seen. The mapping operators are symbolically written as I% or its inverse
Ig if only two grids will be considered.

H 2H 4H
I Iy Ly .

T4h T 1 T,2H

I 5, ol

Fig. 5: Multigrid mappings

Multigrid methods can be found within solution strategies to solve dif-
ference equations, for instance in physics, engineering sciences and mete-—
orology. In geodesy this approach is highly effective for ' banded ' normal
equation systems.

3.1 Multigrid procedure

The multigrid principle for the solution of large linear equation systems
for gridded unknowns is extremely simple: Approximations with smoothed er—
rors are obtained by applying suitable relaxation methods, for instance
Gauss-Seidel and Jacobi, respectively. Because of the error smoothness,
corrections to the iterates have to be calculated on coarser grids. If this
approach is used recursively employing coarser and coarser grids we obtain
optimal iterative solutions. '

Let be given the linear equation

(20)

thh = fh
defined on a dense grid Q¥ with grid size h. Using the method of Gauss-—
Seidel or Jacobi as iterative (relaxational) solver, this can be described
by
R i1
xt(1J) = thr(xJ Ve £, Bpr=I, - Ny (21)

The corresponding residuals or corrections contain dominating lower fre-—
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quencies because of the smoothing behaviour of the relaxational procedures

)5(13) = x, - (J) (22)

The multlpllcat1on with N of both sides of (22) leads to the ' defect !
equation system

(J) (3) _. (D
Npdkg™ = Ty = Nx ™ =2 g - (@)

If this defect equation system can be approximated by

ARCIIAC] (20
we arriQe at a new iteration
xlgj"’l) - x}(;] + Axﬁ‘]) (25)

The choice of N, and this leads to the multigrid idea, is given by an dp-
proximation N of Nh on a coarser grid Q Therefore (24) will be replaced
by

HAxéJ) déj) v Ny regular : (26)

Because (3) and 4 (3) are grid functions defined on a coarser grid one needs

mapping operators between the grids Q and QH
h

Ih i 9n (27)

9 ——=9 o —

h H

The operator Ig restricts the defect dﬁJ) to QH whereas I; interpolates
xéj) to Qh.

dHJ) hdh , (J) I‘HA (3) (28)

The correction 4 (J), which results from a coarse grid, is also called

' coarse grid correction '. With the above equations in mind we are able
to combine relaxation techniques with coarse grid corrections leading to a
two—-grid method, whereby each iteration step consists of smoothings and
coarse grid corrections (see Fig. 6).

i__ 4 Jag -nd e d xitt
*h v, relax % T M h h "7k v, relax h

3.
y o= ;
D ——
4% axy

Fig. 6: Structure of a two-grid method
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Standard mapping operators of multigrid methods are

1 1 1
H 1 h 1
L,=1E|2 ¢ 2! , I, =3 2_.4 2 (29)
1 2 1

refined operators can be obtained by linear system design to be derived by
given frequency responses (see Fig. 7).

dp) dnl) 4
X

=

Fig. 7: Linear system design ) |

3.2 Numerical examples ‘ o

Before demonstrating a two-grid method iterative solution strategies must
numerically be proven. Experience has shown, that the method of Gauss-Seidel
converges fast, thus it is applied in the following.

3.2.1 Gauss-Seidel solver
Using (21) for an iterative description it can be expressed more ecplicitely

(30 _ ), p D) (30a)
with -
-1 n
Gy _* (3) (§-1)
x" = kil LIS + kfi b, X + £y (30b)

Let be given the linear equation system

e

0.78x, -0.02x, -0.12x, ~0.14x, = 0.76

1 2 3 4
—0.02x1 +0.86x2 -0.04x3 +0.06x4 = Q.08
—0.12x1 —O.O4x2 +0.72x3 —0.08x4 = 1.12
—0.14x1 +0.06x2 --0.08x3 +0.74x4 = 0.68

which can be rewritten according to (30b) into

0.22x, +0.02x, +0.12x, +0.14x, +0.76
0.02x, +0.14x%, +0.04x, -0.06x, +0.08
-0.08x, +1.12
+0.26x, +0.68

-
N
w
IS

Nx HN
[y
N
»

=-0.12x., -0.04x, +0.28x
==0.14x. +0.06x, -0.08x

wx
—
n
W oW oW
N

h%
[
N
FN
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In Table 1 the relaxations are given for different steps - also a comparison
can be made with the exact solution obtained by a direct method.

Table 1: Relaxations according to Gauss-Seidel

xl x2 xa x4
(o)

x 0.76 |o0.08 |1.12 |o.68
x| 1.1584 | 0.1184 | 1.6317 | 1.1424
= 1.3730 | 0.1208 | 1.8378 | 1.3080
x3)] 1.2683 | 0.1212 1.9204 | 1.3723
<4 1.5080 | 0.1216 | 1.0533 | 1.3069
x3 1.5242 | 0.1218 | 1.0664 1,4066
exact| 1 s350 | 0.1220 |1.9752 | 1.4130
solut .

3.2.2 Two-grid method

In order to demonstrate the multigrid method a simple two-grid approach is
carried ocut. The example uses digital terrain modelling to set up a linear
equation system.

The following task has to be performed: Interpolate the heights of a grid
of 3x3 by means of a least squares approximation with bilinear finite ele-
ments. Its reference information is given by Fig. 8 and Table 2, in which
5 reference points can be found.

y .
} ?};éu._?gzg___?s's Table 2: Reference information
5 4°*
, : * : } point x y 2
1.2 12,2 ;3,2 181.25 | 57.25 | 11.31
-"'+._'§"f
| ] =d 100 2 276.85 61.72 15.40
' = .
I 1l ! 2. A 3 225.26 | 134.95 | 17.82
b-—_- — —— .
1,1 21 31 4 295.31 | 234.28 | 15.00
Fig. 8: Distribution of reference 5 126.75 | 224.31 | 14.10

points

Setting up the observation equations of the finite element approach
(H. Ebner et al., 1980) leads to the functional description

v, = (l—Axk)(l—Ayk)zij + Axk(l—dyk)zi+1'j + (l-Axk)Aykzi,j+1 +

+ Axkdykzi+1,j+l -

- 2z,
1]
2z, .
1]

%11,

= zi,j'l -

v P
XX,1,)

Vv P
Y¥sl,.3

i,j+1 i+l,j+1

K
PO

RS

i,J

i+l,j

* 241,50
0

MU PSR

z

k

(31)

Axk:= (xk-xi)/d
4y, i= (y,-v;)/d
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Finally, the method of least squares approximation results into (4).
The numerical treatment of the observation equation is as follows:

v, = 0.1875%0.927%z, +O.SHE?O.SZZE%ﬂfO.MSE?0.0ZE% +0.8LZ§KLOZZ&%§i41.31

v, = 0.2315*0.8828z, +O.W§E?0.&i&k%l+0.23u?0.1172z +O.7685*O.IIZ&%§545.40

vy = 0.7474*0.1505z, +O.25E?O.lSIﬁ%ﬂjO.74%“0.8495z +O.253?(L8&23%§{l7.82

Y4==O.0&%%0.1522%§?O.§¥ﬂ10.152&52+O.0«EF0.84282 +O.953UKL8428§I§45.CC
vg = OJZZEWO.ZSGQ;HSO.ZEEFO.Ziihéz+0.T§E?0.7431z +O.26ﬁ?0.743h%§§4Aw10

Vo = 211717

vb,= ;nééaﬁafzaz

?ufe%zfzas

zxfegufals
vid= %afeﬁzfzz3

val= %ﬂfengqﬁs

=]
s

NN
8 B N

&

L}

h

Vs
Yy

For the setup of the normal equations these observation equations are
weighted with pi=1 ,¥i=1,2,3,4,5, and pi=0.1,Vi=6,7,....,11. The normal
equations follow

Shl Zn Z31 %0 %2 %3 k) Zx Zx
0.230243 -0.06895 0.1 -0.19763 0.010244 0 0.1 0 0
.. 1.12232 -0.005708 0,010244 -0.078646 0.04254 0 0.1

.. 0.661714 0 0.042535 -0.130741 0 0 0.1

.. 0.53506 -0,186267 0.1  -0.09757 0.037406 0
1.212100 -0.060209 0.03741 -0.186048 0.005322

0.576607 0 0.00892 -0.07695

0.496285-0.091800 0.1
0.541076 -0.168249
.. 0.s45248

.

1.967 13.674 11.125 2.807  13.477 7.458 7.674 3.395 12.048 f 1

Its parameter estimation obtained by a direct soclution gives

z11 = 7.979 221 = 12.479 231 = 16.807
212 = 11.816 222 = 15.817 223 = 17.359
213 = 14.826 Z23 = 15.627 233 = 15.148

Now the two-grid cycle starts in the way that at first the Gauss-Seidel
solver is used, which is the first step in a V-cycle

(0) |1 oee0 13.6749 11.1250 2.8071 13.4778 7.4583 7.6749 3.3957 12.0401
(1) 150604 13.2156 14.543 6.9469 13.0250 12.9845 10.5422 B8.7142 13.8083
(@) 13607 12.6850 16.1400 B.5021 14.4068 15.5080 12.3008 11.8688 14.4084
@) 14518 10.5586 16.8029 0.4170 14.9643 16.7729 13.4169 13.5930 14.8031

LR T ]
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(3)

4

0.4753 <0.4180 -0.0030 -0.224]1 -1.8146 -1.1839 0.7824

=f -N x(3)

T!
he defect results from 2V *n

(3)
4

it has to be mapped onto the coarsest grid

-1.6776 -0.9070

SRR

I N |
H

H H
d d
12 2
—--x--—if T“-_u—----f
0.782 -1.678 -0.907 I |
§ ] :
-0.224 -1.815,-1.164 __.Iﬁ—. ! !
i ]
0.475 -0.418 -0.003
d11 d21
(1) mapping by means of operators
d?l = é | 4%0.4753-2*%0,4180-2%0.2241-1%1,8146| = ~0.1331
dgl = % | 4%-0.0030-2%0,4180-1%1.8146-2%1.1839|= -0.5589
d?z = % |4*0.7824-2%1.,6776-2*%0.2241-1%1.8146| = -0.2765
H 1 . .
d22 =3 | 4%-0.907-2%1.6776-2*1.1839-1%1.8146| = -1.2406
(2) simple by reduction of the points in between
H H
d11 = 0.4753 , d21 = =0.0030
H H
d12 = 0.7824 , d22 = ~0.9070
The mapping of the normal equation matrix N_ (approximation) is found by
the definition of observation equations in Qhe coarsest grid which leads
to

H H H H
Avi = O.ﬂ%!ﬁo.Seﬁﬂbalfo.40&?0.953%?Enf0.Eﬁ§?0.03ﬂ&b52?0.40&?0.03&&&22
H H H H
AVE = 0.IEE“O,94l4mﬁlf0.&3&?0.94Lmb$nf0.1158*0.05864gu£o.83@?0.05!&&%2
H H H H
AVé = O.3K§”O.SZ¥MXﬁ1fO.G%;FO.SZEQME1+O.3Z§"O.424&&52?0.Gﬁiﬂ0.4%¥hh22

e o.mm.masm%m.grzse*oma&txﬂﬂm.oeaa*o.92144::?2:,0.9766*0.9@4&"2’2

4
. H .- H H H
Avs = o.aaxao.1284malfo.x3§r0.1284.ﬁ§fo.aazﬁo.szuaui2+o.xa§ﬂo.szuyhé2

and furthermore to

H “H H H
4%y ax5y 4%15 4%5 %
0.3980 0.3943 0.1294 0.0847 0.4753
.. 0.9821 0.0847 0.2150 -0.0030
.. 0.5961 0.1503 0.7824
.. 0.8969 -0.8070
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The following solution vector is obtained

AxH = +1.4272 -0.4154 1.3833 -1.,2782
which is mapped by bilinear interpolation:onto the dense grid n
Ax?l = 1.4272 Ax?z = 0.5059 Ax?3 = =0.4154
Axh = 1.4052 Axh = 0.2792 Axh = -0.8468
21 22 23
h h ; .h
Ax31 = 1.3833 Ax32 = 0.0526 Ax33 = =-1.2782

Therefore, the first coarse grid correction can be carried out leading to
the solution :

(1) (1),

(1) =

2,,'= 5.9490 2, '= 13.0645 2;).= 16.4075
(1) St (1)_

2,5'=10.8223  2,,'= 15.2635 %, '= 15.9261

(1) L(1)_ S(1)_

2,3'=14.8002  2,.'= 13.6465 2, = 13.5249

Comment: For reasons of simplicity a simple bilinear interpolation was used
to transport the coarse grid correction onto the dense grid. This
can be the starting point for using standard multigrid operators.
To complete the multigrid cycle further relaxations (1 or 2) should
be performed.

4. CONCLUSIONS

It has been shown that Kronecker separations as well as iterative solution
strategies nowadays become very attractive especially for large linear systems
based on regular grids. As far as multigrid methods are concerned some in-
vestigations must be made in particular on the choice of mapping operators.
But the idea is really fascinating - the experience up to now gives optimism
to use it in general applications of digital image processing and also in
the adjustment of geodetic networks.
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