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ABSTRACT

Frtsch, D., 1986. Photogrammetry as a tool for detecting recent crustal movements. In: H.G. Henneberg
(Editor), Recent Crustal Movements, 1985. Tectonophysics, 130: 407-420.

‘Progress in model building and in advanced exposure and evaluation methods is leading photogram-
metry up into the field of precise point determination, up to now solved by classical geodetic
triangulation and /or trilateration. In combination with the statistical test theory, photogrammetry can be
used as a tool to detect recent crustal movements or deformations of man-made constructions, such as in
coal mining or oil and gas exploitation.

For these reasons, this paper deals with model building for modern aerial triangulation with respect
to hypothesis tests to detect point displacements greater than the measurement noise. An example from
brown-coal mining demonstrates accuracies and the application of some statistical tests shows the
efficiency of advanced aerial photogrammetry.

Questo capitolo & apparso originariamente su: Tectonophysics, 130: 407 - 420.
© Elsevier Science Publishers B. V., 1986. Reprinted with permission.
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INTRODUCTION

The application of aerial triangulation dates back more than 50 years. Although
its conventional scope was medium-scale topographic mapping, progress in model
building within the last two decades has brought photogrammetry up into the field
of precise point determination. In the beginning, analytical solutions in aerial
photogrammetry reached the 10 (cm) level and somewhat better (Ackermann, 1968),
but nowadays analytical bundle adjustments with additional parameters could
increase the accuracy to the 1 (cm) level (Griin, 1982), a constant image scale of
1:5000 being supposed. Future model refinements will also provide for an increase
of accuracy, so that the precision of aerial photogrammetry may be sufficient to
determine recent crustal movements or movements in anthropogenously influenced
areas, e.g. in mining or oil and gas exploitation areas.

The progress in accuracy has been achieved primarily by the introduction of
additional parameters to compensate systematic errors, also called “self-calibration”
(Ebner, 1976), and secondly, by changing the model for block adjustment, resulting
in bundle adjustment with self-calibration. Obviously, it is not so simple to make a
proper choice of additional parameters for self-calibration that are purely determin-
istic; therefore, one has to think of a combination between deterministic and
random parameters (Koch, 1983a) or of refinements of dispersion components by
estimating variance-covariance components (Forstner and Schroth, 1982), supple-
mental to a few deterministic parameters.

In order to detect displacements of points in moving areas, photogrammetric
images or photograms fix the area being controlled to a certain epoch i, with i as
repetition number going from /€ {1,2,...}. The bundle adjustment estimates
coordinates of the points to be analysed for every epoch i and delivers, if necessary,
estimates for dispersion components of the estimated quantities. Let us consider the
estimated coordinates as signals and dispersion components as noise, the decision
about displacements depends on the signal /noise ratio (SNR) in connection with
given statistics, which means percentage points or fractils of any distribution. The
following approach to détecting displacements of points' by means of photogram-
metry will first introduce the models and secondly the statistical tests prepared
especially for photogrammetric point determination.

MODELS FOR PHOTOGRAMMETRIC POINT DETERMINATION

Let us start from the central-perspective image transformation between the space

&
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of photograms and the object space given by Schwidefsky and Ackermann (1976):

Xi— Xg Xi— X
Yi=Yo {=sR| Y, — T (1)

—c Z—-Z,
with x;, y; Vi=1,2,... as coordinates of the photogram for point P, ¢ as

calibrated focal length and x4, y, as coordinates of the principal point; the
right-hand side consists of scale factor s, the rotation matrix R and the coordinates
X, Y, Z; Vi=1,2,... of the object points P, as well as the coordinates X,, Y, Z,
of the projection centre. If the scale factor s is resolved and substituted, we get the
well-known observation functionals:

m(Xi—X) + rp (Y= Yo) +ri3(Z, - Z,)
(X — Xo) + rp (Y= Yo) +1r35(Z, - Z,)
(X = Xo) + (Y= Yy) + 3 (Z,— Z,)
ray(X; = Xo) + ro (Y, = Yo) + 1y (Z, = Z,)

x,-—x0= -

@)

Yi"}’(): Y

The rotation matrix R = (v, ;) Vi,j=1, 2, 3 may be the Rodriques representation
R =f(q0, 9:, 92, g3) With qq, 41, g5, g5 as coordinates of a quaternion (Grafarend,
1983) or consisting of the traditionally used rotations by the Cardan axes ¢, w, .

Let us assume a given interior orientation ¢, x,, ¥,, so that the parameters of the
exterior orientation Xy, Y,, Z,, ¢, w, k, as well as the object coordinates X, Y,, Z,
have to be estimated by the observation functionals (2). These observation function-
als are invariant against S-transformations within the %3, which means the photo-
grammetric point manifold can be translated, rotated and scaled without changing
the observations. The number of non-estimatable parameters will be 7, ie, 3
translations, 3 rotations and 1 scale factor, which define the datum of the point
manifold. Traditionally, the datum problem is solved in photogrammetry with the
introduction of coordinates of control points, whose number is greater than the rank
or datum deficiency. But in detecting recent crustal movements, the datum should
be defined by the statistical analysis of the data, because also control points
themselves may have moved.

For that reason, the following models will consider the requirements of modern
parameter estimation to define also the final datum for fixing the point manifold
within the parameter space. The model building will be restricted to be static and
not kinematic between the exposure epochs. Furthermore, for reasons of simplicity,
only models for pairwise different epochs will be given.
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(i) Let us assume linearization of the observation functionals for the introduction
of the first linear model:

IR

]

[ 2
Yi g; 0 0 0
| R

Uian 0 :
[ 20 }:ZUBQU (3b)

0 o;

J =i

which we will call a sequential univariate Gauss-Markov model; for photogrammet-
ric purposes the first-order model will be split up into (Fritsch et al., 1984):

Z,=[A4;, 4,, 4] . (4a)
Vk=i, j

xi=[x{, x5, x3] (4b)
with the r X 1 vector x; of unknown parameters of points being analysed, the s X 1
vector x, of exterior orientation parameters and the X 1 vector x; of additional
parameters for self-calibration or other information to be considered within the
parameter estimation. The n, X u, matrix of coefficients Z, is not of full rank, this
means rk Z, = g, < u,, if no control points are introduced. The operators E and D
characterize expectation and dispersion, respectively, of the observation vector y,;
its second-order model will be described by the unknown variance component of
unit weight ¢/ in connection with the n, X u, positive definite cofactor or weight
matrix Q,, of the observations, represented as a Block-Hadamard product between
the 2 X2 matrix 2, and Q,; as well as Q,;, whereas the Block-Hadamard product is
commonly defined as ‘

Gll ... le H]‘ .. H'ik G)]@H]] ... le®H"k
G . = . (5)
G, G Hj, Hy, G,®H, ... G,®H,

with ® as Kronecker product:
GoH:=g H] (6)
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The general solution by least squares leads to partly MINOLESS-type estimates
(MInimum NOrm LEast Squares Solution) (Schaffrin, 1975; Koch, 1980):

£, = (Zk’QI:kIZk) -Zk’QI:klyk (73)
D(%,) =0X(2/0:l2,),, (7b)
8% = ‘A’;(Q;klék/("k — ) (7C)

with v, as the least squares residual vector. Like (3), the model with its solutions (7)
1s currently in use in photogrammetry, however, in fixing the datum a priori by
introduction of coordinates of control points as observational equations, whose
number is greater than the datum deficiency. Thus, there exists no possibility of
varying the datum a posteriori, which should also be done in detecting displace-
ments of control points.

(i) In order to detect more sensitive displacements, Koch (1980, 1983a) intro-
duces the following model:

sop=n((3)-[2 2]~

eon=o([3])-7, )el§ ¢l
g y1]7 e, o2| lo o

1]

OIZQ G;;
= S |=2,a6, (8b)
Gij o Q

which we will call a simple multivariate Gauss-Markov model, also to be written
with y,;=:vec ¥ and x,, = vec X as follows

E(Y)=2X, D(vecY)=3} 080 9)
The n X u coefficient matrix Z must be the same for every exposure epoch; the

same holds for the weight matrix @ but with the advantage of estimating the
and the 3 X< 1 vector of unknown variance-covariance components

Ti;; == [012, 0‘/’ sz]’ (14)
we convert model (11) into the model of variance-covariance components:
E(y‘.j):=Z,.ij., vec D(yij),:' Vit (15)

where we can first estimate the variance-covariance components and secondly the
unknown parameters.
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After Schaffrin (1983), Fritsch and Schaffrin (1986), we have to solve the
nonlinear equations:

T,5=qy (16)
 with: |
T,=V;(W,® W,)V, - (17a)
g, =V (W, Py, ® W,P,y,) (17b)
Pij =I1-2, (ZIJZU) Z,; (170)
W, =65 -0,'2,(2,8;'2,)2,8;' = W, (17d)

and arive at the estimation:

ﬁj:z}qu‘:[Vi;’("{'/@ l'V, ] u uy'j u/uPuylj) (18)
which is called repro-BIQUAMBE (reproducmg Best Invariant QUAdratic Mini-
mum Biased Estimation (Schaffrin, 1983) if (18) is iterated onto 7,,, = 7,.

After the estimation of the variance-covariance components follows the partly
MINOLESS for the unknown parameters x;;

= (Z’;EJIZ, ) Z; 0!/ Yij (19)

dependent on the previously estimated dispersion components. The generalization
of the model (11) has been achieved at the cost of much computational expenditure
in solving (16) to (18), therefore, further numerical experience is necessary for
practical application of that model, especially in photogrammetry with its large
number of observations.

DEFINITION OF THE DATUM

In detecting displacements of points in moving areas, only those points should
define the datum which did not move significantly, i.e., whose movements have been
caused by the measurement noise alone.

Traditionally in photogrammetry, the datum is defined by the coordinates of
control points introduced as random information into the adjustment procedure
covariance component between the epochs i and ;. This covariance component is a
number for homogeneous data acquisition in both observation epochs, i.e., the same
flight disposition, the same region being controlled, the same device for obtaining
photogram coordinates, and so on. &
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The partly MINOLESS estimate within the simple multivariate Gauss-Markov
Model reads as follows:

X=(2'Q7'2z)"zQ 'Y (10a)
with its dispersion matrix:

D(vec X) = Zl.j ®(Z'QZ),, (10b)
whose components can easily be estimated by:

8 =80""0/(n-q) Vk=i,j (10c)
6, =807'%/(n—q) (10d)

The estimated parameters X are independent of the covariance component g;,
contrary to the following.

(ii1) The more generalized model for the evaluation of repeated observations, has
been introduced by Schaffrin (1981):

Y rZ,- 0 ([x;
) =£(3])=|s Z_] M EERY (112)
-, :
Vi o, 0 0. Qij
D . :=D =
(ylj) ([y/]) | 0 sz E[Qilj Qj,]

=3,80,=10, (11b)

2
_ ["i Qi oijQij

B 2
0,;Qi; 9 Qy

It is called the incomplete multivariate Gauss-Markov model, and considers differ-
ent point locations and cofactor matrices for epochs i and j, contrary to the above
mentioned simple multivariate Gauss-Markov model.

By means of:

vec(E,.jEBij) =V 1, (12)°

] ]

with the (n; + ;) X 3 matrices V,; defined as follows:

.0 0 0, 0 0
Vij:=[vec[Q0” 0], VCC[Q,-',- QOJ}, vec[0 ij” (13)



232 D. Fritsch

(Schmid, 1980) which is not the general solution for MINOLESS estimates. For this
reason, the given information will be introduced as approximate values, that provide
also for the determination of approximate values for the object coordinates being
estimated. The final datum will be derived from a combination of some control
points in connection with object points, whose movements have been statistically
checked to be non-significant.

For presentation of the choice of the datum in photogrammetry, let us introduce
the normal equation system resulting from (4) for the least-squares solution within
the sequential univariate Gauss-Markov model

Ny N N |] i by

N21k N22k N23k = b2k
N3lk N32k N33k b3k

,  epoch k (20)

1533
N
~

13
W
=

with N, == A7, 0;/A, ;. and b, = A;Q;'y,, whereby N,;, N;; are matrices of full
rank and N,, is rank deficient. By means of the constraints:

X1k
[B,, B,, By]| X2 | =c ‘ (21)

X3k

the datum could be fixed, if the number of rows of B: =[B,, B,, B;] is in
accordance with the rank deficiency. Let the datum be defined by the point
parameters only (Fritsch and Schaffrin, 1982), i.e., by a subgroup of coordinates
which did not move between the two observation epochs:

[ X1 |15 = min (22)
which results in (Meissl, 1969):

*1k
[B,,0,0]| X2« [=0 , (23)

X3k

The ordering scheme of the point parameters should be such that control points are
standing first. If the number of the datum deficiency is u, — g, the initial datum
can be fixed by setting the first w, — g, parameters to zero. Nowadays, all bundle
adjustments use the information on control points as observational equations with
appropriate weights, so that the procedure above can be easily implemented by
using as many observational equations as the rank deficiency will be, with ap-

propriate weights going on infinity. R
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The final point parameters result from an S-transformation (Baarda, 1973):

i = Tip®ike (24)

with %, as initial solution of the point parameters and 73, as the upper
symmetric part of order s X s from the S-transformation matrix:
-1

Ellk E{k
E3) E3)

’ ’ -1
I1-E| (BE)) B 0 0 Tios
=| —-Ej, (BE,) 'B, I 0|=|Tu
~Ej  (BE)'B, 0 1| LT

(25)

S~ 2
-~ o 9

and E,, = A"(Z,,) defined as null space of the coefficient matrices Z,, Vi=1, 2, 3,
given, for instance, for the point parameters by:

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
E, = 0 210 Jio 0 220 Y0 0 ~Zs0 Yso
Z10 0 “Xw0 %2 0 X0 - Zs0 0 ~Xs0
Yo X 0 —Yw X2 0 cee TXso Xso 0
L X0 Yo Z10 X20 Y20 220 Xs0 Yso0 Z50 |
| (26)

if a full rank deficiency of 7 has been supposed. The matrix B, is obtained from E;,
by cancellation of any columns of E,,, i.e., it contains only coefficients x4, Y0, Zio
and 1’s of points i contributing to the datum of the photogrammetric network. It
should be noted, that x,,, y,, and z;, are approximate coordmates with regard to
the center of gravity of the network.

The transformation of the cofactor matrix is somewhat more comphcated Let us
introduce the symmetrical reflexive generalized inverse:

0,., O :
= 27
ch l: 0 Nk_ 1 ] . ( )

- with @,,. as inverse of the normal equation matrix (20), where the first u, — g,
parameters had been set to zero. After Pope (1973) and Koch (1983b), the transfor-
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mation of the cofactor matrix:
Qo= kachTk,b (28)
can be rewritten to:
A% ’ 1 ’ Nl ’ n 1
Q.= Qu.— Q..B'(E,B’) 'E, — E(BE,)” 'BQ.+ E/(BE.) 'BQ.B'(E.B')"'E,
(29)
and with (28) also as:

(BE{) 'B=(B,E{,) 'B,=[H,, F] (30)

with (u, — q,)X(n, — q,) matrix H, and (u, —q,)X(s — u, + g, ) matrix F,, we
arrive at the final expression:

0 | :
Qi =0~ {Nk—lpk/}Ek - E/:IO’ FlNk_ll + EI:FINk—IFIIEk (31)
/
For computation of @, and N, 'F/, the normal equations (20) will be extended by
the matrix F; as follows:

NS NS NS N [E2] 62 o
N. 1({312 Nl N 1(22 N1(3r/3 -’A‘ﬁ) _ b(lrk) F/ ‘ (32)
NZ(IO)Z N2(1rk) N22k N23k £2k bzk 0
_Na(lok) N3(1rk) Ny Moy || %3, by, 0

whereby the point parameters £, can be eliminated:

-
-1 -1 I
Ny = Ny Vi Nig iy Moz = Moy Niy Nys, (1 X5y
-1 _ -1

_N32k - NBIkNllklek’ N33k NBIkNllkNIBk

£3;
b, — N, N3'b,, —~N, N F/ - . -
_ [ 2k 21k 1_1;( 1% 21k 1_11; 1’] = Ne=[b, F] (33)
by — Ny Vb, =Ny Ny By
and it results by back substitution with ¥ = N~'b that:
Xk =N1_lll<b1k_N12k-£2k_ 13 %34 (34)

and its corresponding cofactor matrix is given by:

0 0
= —_ T — ’ ny— 35
Qi [0 N111{1+ [N, N IN ! [N, Ny5) an}} (35)
and thirdly we get from (33):
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NkF1'=N~1.F' (36)

The matrix @,,,. need not be known for all elements, but should be given
pointwise; this reduces the computational expenditure in photogrammetry drasti-
cally. By means of (31), the final elements of Q,,;, can be obtained:

0
Qiiko = Qnike — [ IFI}Elk Elk[O N, 1]"'ElkFlNk IFIEIA (37)

We arrive at the final datum in successive stages. First, all these control points could
be introduced as datum information, which is available to both observatlon epochs.
Secondly, one introduces minimum datum information with those coordinates of
control points whose studentized displacements are minimum. All other control
points common to both epochs will be tested by means of hypothesis tests on
significant displacements. If the test is negative, this means that there is no
significant displacement for the point or any individual coordinate, or this point or
coordinate may now additionally contribute to definition of the datum. Thus, all
control points could be checked on displacements, and moreover object points will
also be tested on movements in order to contribute to the datum, if they are
common to both epochs and have non-significant movements. In this way, the final
datum will be derived from control points and object points, which will not move
significantly between the two observation epochs.

HYPOTHESIS TESTING

For separation of the set of control points and object points into two disjunctive
sets of datum points and variable points, hypotheses will be introduced based on the
assumption that certain points are fixed points. Because of the different models,
hypothesis testing methods will differ somewhat from each other, as can be seen in
the following.

(i) The hypothesis test within the sequential univariate Gauss-Markov model
presupposes any test on homogeneity of the observations between the two epochs;
this can be stated as follows: :

Hy: of = o} against H;: o # o} (38)
its acceptance or rejection depends on the variance ratio (Wolf, 1975):
Uiz/‘bz*F(ui”qx'a uj—qj) (39)

If the hypothesis (38) has been accepted, we can proceed with formulations on
hypothesis testing for point movements. For this reason, let us introduce the
hypothesis:
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. P, (P — . . Py _ (P
Hy: Ixflb)_xl | =0 against H,: |x{’ xfjb)|4=0 (40)

for pointwise hypothesis testing, where individual coordinates or all coordinates of
point P; can be tested. Its test statistic is given by Koch (1985):

1 . e _ e -
T= m(xm) - xl(JPb)) [((Z,. 0i'z),, )p,,+ ((Zijlej)r.r )p,]

X(x{f)—xfp)) (41)
and decides on acceptance if T < Fy_,;, . —, or the percentage point
o0
aT=_/ F(r, nij_qij) dT >« (42)

with « as level of significance.
(ii) Let hypothesis (40) within the simple multlvanate Gauss-Markov model be

defined. The following test value decides on acceptance or I'C_]CCthl’l.
1 r— -1{ A -
T= )(x{,’l’-x{fb’) (20 'z),], (& - #5) (43)

22 _ A2 ~2
r(o,. 2ol.j+ G

which considers the covariance between epoch i and epoch j.

(i) The hypothesis (40) is also valid for testing within the incomplete muiti-
variate Gauss-Markov model, where the test value will be:

1

r(a,?—za,j+@2)(

T=

s —2m0) (20852, ], (2 - #5) (44)

which can be used approximately, because the unknown parameters should be seen
independently from the variance-covariance components, although they are depen-
dent.

EXAMPLE

Let us consider an example coming from brown-coal mining, where an area of
opencast mining has been controlled for movements caused by working of the coal.
The area contains many control points and additional points, which we will call
quality points, determined by classical geodetic measurements with an accuracy of
about o,,= +10 (mm), to derive a quality control of the photogrammetric point
determination (see Fig. 1).
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k-4

Fig. 1. Observation scheme and control points.

TABLE 1

Information on exposures and image evaluations

ig +5600 bis 7000 &

Y Y
A2
AT
7
AT3 a2 o7 AT o727
&1 ¢®723
A .720 71
s oM AT8 /
ame 7% ~ i5=7000 pit
o7 ATD
A706 & 5007 003
is H ® ATS
- anff
AT705 Y - 5022
006
°~xs 2015
A0, < smg L o0 ¢, .® o=z
sor7 ® 2021 0303 5009 AT
® 301
05023 l °so0e @ 5001
%20 o3 *® 43008
A H9e o2 i ®5013
® 5 AT - +JOO7
LT 9 eme0 e
T" ig 25600
w20 OMN o i e I
A7 L A 0507 - ASCS

4 control point
e quality point
> ——-u flight axis

Date of Image Camera Comparator Evaluation
exposure scale programme
1.11.80 7000 Zeiss 15/23 ATV Zeiss PSK 1 PAT-B * with
5600 self calibration
16.11.81 7000 Zeiss 15/23 AV Zeiss PSK 1 PAT-B * with
5600 self calibration

* Bundle Adjustment within sequential Gauss-Markov models with control points as random informa-

tion.
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All control points and quality points geodetically determined have been signal-
ized for photogrammetric evaluation. The whole area has been flown periodically
since 1978 (Reichenbach, 1981), but let us consider only two photogrammetric
evaluations for demonstrating the accuracies being achieved (see Tables 1 and 2).

The values o, and o0, demonstrate rms-deviations for control points and quality
points between geodetic and photogrammetric point determination, whereby e, ...
and ¢, are numbers for maximum deviations of control points only. The interior
accuracy of the photogrammetric point determination can be given to 5.4 (mm) < o,,
0, < 16.5 (mm) with o,,,,, = +7.9 (mm) (Deutsch. Braunkohlen-Industrie-Verein e.V., -
1983). v

For a demonstration of hypothesis testing, let us take some samples of the point
manifold determined photogrammetrically. Because of the availability of variances,
the tests are restricted to single coordinates only and not groups of coordinates. The
test on homogeneity delivers 07/0f =1.0 and will be accepted for redundancy
f=1250 and a =0.05. The points tested with test values (41) are represented in
Table 3.

As we can see from Table 3, for example, it is not allowed to use the x —y
coordinates of control point 713 as datum information in the bundle adjustment.

TABLE 2

Absolute accuracies

Date of Point o o, o, € max €y max
exposure type (pm) (mm) (mm) (mm) (mm)
1.11.80 control point 34 11 10 - -
quality point 12 19 28 38
16.11.81 control point 34 6 10 - -
- quality point 6 10 15 20
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TABLE 3

Hypothesis tests for o, , = 8 (mm) and o, = + 16 (mm)

Point Coordinates T Movements (& = 0.05)
Yes No
713 x 1.56 X
6.25 X
z 0 X
3015 x 0.19 X
4.25 X
z 151.6 X
3021 x 3.29 X
0.06 X
z 1.0 X

Therefore, it is indispensable to check the control points in moving areas on
movements, too, to arrive at a definite datum definition.

CONCLUSIONS

Present-day photogrammetry is an efficient tool for making. precise point de-
termination and controlling points for displacements, if repeated observations are
available. It is, therefore, an alternative to classical geodetic observation techniques,
which may in some cases, especially in developing countries, be very expensive, so
that photogrammetry has the additional advantage of being more economical.
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