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Introduction and Synopsis

In recent years, Ackermann has investigated the theoretical hori-

zontal accuracy of. the adjustment according to the anblock method

of blocks of up to 200 independent models (1), (2}, (3). He found

that the standard deviations of the adjusted coordinates of model

tie points within the block are nearly constant, with only a weak

dependency on block size, as long as the periphery of the block is
well supported by control points. In a block with 200 models, the

maximum standard error is only 1.2 times the standard error of

unit weight.

Large, modern computers like CDC 6600, UNIVAC 1108, or the large
models of the IBM 360 series already permit the adjustment of
blocks of 1000 and more models. It is thus of interest to inve-
stigate whether the accuracy properties determined by Ackermann
are valid also for blocks of this size.

In the following, the theoretical horizontal accuracy of blocks
of up to 10 000 independent models will be investigated for the
case of high control density at the periphery of the block (di-
stance between control points two base lengths).

In accordance with the theoretical character of the investigation,
overlap, point arrangement etc. are assumed to be schematically
ideal: 60 % forward overlap, 20 % lateral, tie points in the mo-
del corners, flat terrain. The control points are assumed to be
error-free. The functional model (the statistical concepts of the
functional and the stochastic model must be distinguished here
from the photogrammetric model)} of the anblock adjustment presup-
poses an adequately accurate Tevelling of the independent models
and permits a plane similarity transformation for each. The sto-
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chastic model considers the measured coordinates of the indepen-
dent models as uncorrelated and having equal accuracy. This simple
error theory is at present being tested by the author with the help
of more general mathematical models. The theoretical foundations
for this are published in (4).

In (3) it was determined that for high control point density at
the block edges the accuracy is practically independent from the
shape of the block. The investigation was therefore restricted to
square blocks. For the computation, the hypermatrix code described
in (5) was used. As a result, the standard errors of the coordina-
tes of the tie points in units of the standard error of unit
weight o, was obtained.

Results and Discussion

The investigation comprises seven square blocks of different si-
zes, in which the number of strips varies between 10 and 70 in
steps of ten. The number of models ranges therefore between 200
and 9 800. The control points are arranged uniformly at the peri-
phery of the block with a distance of two base lengths between
points. Figure 1 shows the standard error of the coordinates of
selected tie points in units of the standard error of unit weight
for blocks of 10, 30, 50 and 70 strips.

The equality of Ty and ay is a characteristic of the anblock me-
thod in connection with the simple stochastic model on which it
is based. Considering the slight accuracy differences within the
individual blocks, it appeared sufficient to indicate the stan-
dard errors of only 81 tie points in a regular 9 x 9 grid. Since
each block has two axes of symmetry, it is also sufficient to
show a quarter of the block and thus the standard errors of 25

tie points only.

53



54

.10 strips
200 models :
i
0499 111 1168 118 | —
101 i | 118 118
0 TI BIE0A 16
> 1] 11 112 112
0196 1/02
)
Tmax = 1.19 ¢
Tmean” 1.08 ¢
50 strips
5000 models
Ii
rAY

43

41

T
4
o
T
=
™)
@

= 1.43 ¢
o

9 mean> 1.34 o,

o]
max

Figure 1. The standard errors

selected tie points

30 strips
1800 models

1 12 1j36_.

[—""H:? k! 1(35

__r 12, 30
g 1] 20
)
Omax = 1.36 ¢
Tmean 1.27 o
70 strips
9800 models I
i
1 Wi 8 ..
i 47
1] 'r "
.t” 1
'é 42
33
S max - 1.48 o,
cmean= 1.39 00

g = 0
X

in units of the standard error

of the coordinates of

of unit weight 9, for square blocks of 10, 30, 50

and 70 strips



For a representative indication of accuracy, the maximum stan-
dard error %max {(in the middle of the block) and the mean value
Smean {(mean square value of the 81 standard errors) are also
shown. For the block of ten strips, the standard errors agree
with the corresponding values found by Ackermann. Only Onean -
1.08 9, differs slightly from the mean square value u = 1.06 9,

computed from the standard errors of all tie points.

It shows that the accuracy stays very homogeneous even in extra-
ordinarily large blocks, and that the maximum standard error even
for 9 800 models only reaches the magnitude 1.48 g, Figure 1 al-
so shows that the accuracy difference between points arranged sym-
metrically to the diagonal of the block becomes smaller with in-
creasing number of models; in the block of 70 strips with three-
digit indication it even disappears: the shape of the individual
model becomes pratically immaterial. (A block of this size at a
photo scale of 1 : 40 000 would, for instance, cover the terri-
tory of the German Federal Republic, and the theoretical standard
errors of all coordinates would be smaller than 1 metre).

To show the interrelationship between accuracy and block size,
figure 2 shows the mean and the maximum standard error in units

of o, over the number of strips.

For blocks of 4, 6, 8 and 10 strips, 9 max and u were taken
from (3). At ten strips, the above mentioned jump between
p = 1.06 and Onean = 1.08 ozcurs.

Figure 2 shows strikingly that the characteristic of the curves
is better than linear. They can be very well approximated with
the following logarithmic functions (maximum residual deviations
are 1 %):
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Figure 2. Maximum and mean standard errors of the horizontal
coordinates of the tie points in units of the stan-
dard error of unit weight o, for square blocks with
high control point density at the edges

Omean/®, = 0-71 + 0.37 Tog ng ( 10 =g 2 70) (1)
= 0.65 + 0.185 log ny (200 = ny = 9800)

Smax /9, = 0-81 + 0.37 log ng ( Sng = 70) (2)
= 0.75 + 0.185 Tog ny ( 32 = ny = 9800)

ng = number of strips
ny = number of models

The similarity of these empirical determined relationships with
the Togarithmic function for the mean square value of the stan-
dard errors in levelling nets derived theoretically in (6) seems
very remarkable. It confirms the opinion gained from the compa-
rison of the accuracy structures of geodetic nets (7) and of pho-
togrammetric horizontal blocks, that the error propagation in
two-dimensional systems is subject to similar laws in spite of
the differences in the individual elements.
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Equations (1) and (2) show a constant difference between nean

and o This means that the quotient decreases with in-

max’
creasing block size. Table 1 shows the values:

o]
s Smax’ %o Smean’ %o EE??;
10 1.19 1.08 1.10
20 1.30 1.20 1.08
30 1.36 1.27 1.07
40 1.40 1.31 1.07
50 1.43 1.34 1.07
60 1.46 1.37 1.06
70 1.48 1.39 1.06

Table 1. The relationship between maximum and mean standard
errors for square blocks of 10 to 70 strips with
high control point density at the edges

In the planning of aerialtriangulation projects, the given quan-
tities are usually the size of the area on the ground and the de-
sired accuracy. Required is then the optimum flight disposition:
type of camera, photo scale, flying height, number of strips or
photographs, and the number and distribution of the control points.
In our examples, the problem is restricted tc the case of square
blocks. According to (8) a standard error of unit weight

o, = 16 ym at photo scale is assumed for wide-angle photographs
9 x 9 in. on film. If the length D of a side in kilometers is cho-
sen as a representative measure of the size of the block, and if
the accuracy is denoted by %max in centimeters, then we obtain for
high control point density at the block edges the following rela-
tionship between block size, accuracy and number of strips from

equation (2):

—2% -2 (7.2 + 3.3 log n,) (3)
D|km]| s

57



Figure 3 gives a graphic illustration of equation (3).
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Figure 3. Relationship between block side length D,
maximum standard errors and number of strips
for square blocks with high density of con-
trol at the edges

It is remarkable that for ng max/D converges -» 0. This
means that the accuracy can theoretically be increased at will
relative to the size of the block. For ng = 70 (9 800 models),
it is better than 1 : 500 000. This is an impressive demonstra-

tion of the efficiency of block adjustment.

- 00, O

Finally, some remarks concerning the accuracy of the distances
between the adjusted tie points. In the inversion of the redu-
ced normal equations, only positive weight coefficients of the
adjusted coordinates were obtained for all block sizes. This means
that the accuracy of all distances between tie points is better
than the accuracy that would result from the standard errors alo-
ne (disregarding the correlation). For the distances between di-
rectly adjacent points (51 = base length, Sy = two base lengths)
the standard errors 051 and o expressed in units of o, turned
out to be practically constant for all block sizes and nearly in-
dependent of the position of the points within the blocks: '
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These results prove the high horizontal accuracy of adjusted
blocks with high control point density at the edges for prac-
tically any block size. For 10 000 models, the maximum standard
error of the coordinates of the tie points still remains below
1.5 o, The photogrammetric determination of points through block
adjustments is therefore very suitable for cadastral and reallot-
ment purposes as well as for the densification of geodetic net-
works. It appears therefore to be possible and expedient for map-
ping large spaces or even whole continents, as for example in the
Brazilian or Australian 1 : 100 000 mapping projects, to limit the
geodetic surveys to the establishment of a widely spaced traverse
framework and to densify each resulting loop with a single photo-
grammetric block. The individual stations of the traverses would
then supply the control point structure for the block edges which
is essential for the accuracy.

Computer processing details

To keep the numerical effort as small as possible, the reduced
normal equations based on the unknown coordinates were establi-
shed directly. Because of the schematic arrangement of the models
and of the control point distribution, the x and y coordinates

are not interrelated in this case: The system of normal equa-
tions is split up into two equal, independent partial systems. As
far as the numerical solution is concerned, this means that the
numher of unknowns as well as the bandwidth is reduced to one-
half, with a consequent reduction of the numerical effort to 1/8.
If Ng denotes the number of strips, then the number of unknowns

of the adjustment is obtained as 2 n2 - n + 1. The bandwidth was
minimized by arranging the consecutive numbering of the tie poinfs
transversely to the direction of the strips. In the numerical so-
lution, advantage was taken of the fact that only the standard er-
rors of 81 tie points in a regular 9 x 9 grid were of interest, of
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which only 25 points located in a quarter of the block are dif-
ferent from one another because of the symmetrical properties of
the blocks. It was therefore possible to substitute a solution of
the normal equations with 25 righthand sides (the corresponding

25 columns of the unit matrix) for the complete inversion of the
reduced normal equation matrix. It was thus possible to use the
FORTRAN-ASA programme HYCHOL (5) by Klein for the solution of lar-
ge equation systems subdivided into sub-matrices with many right-
hand sides.

The computation was carried out in the CDC 6600 with core storage
for 128 K words of 60 bits each and external disc storage of

11 000 000 words. Central processor time is determined primarily
by the number of arithmetic operations, input/output time by the
number of disc instructions. For the solution of large systems
with HYCHOL on the CDC 6600, we obtain in good approximation:

CP in seconds: 6 x 10'6 x number of multiplications (6)
I0 in seconds: 4 x number of submatrices

For the computed blocks, Table 2 shows the photogrammetric data
and the data determining the numerical solution, and the compu-
ting times on the CDC 6600 {inciuding compiiation).

number n 10 20 30 40 50 60 70

of strips °

number 2n.2 | 200 800 1800 3200 5000 7200 9800

of models

Unknowns 191 781 1771 3161 4951 7141 9731

2

2nS - nS + 1

band-width 2n_ 20 40 60 80 100 120 140
"No. of right- 25 25 25 25 25 25 25

hand sides

CP-time 115 215 50° 1Ms25 3M375 gM315 1oMs57S

10-time 3™115 6Mp5S 9™325 13M435 17™385 21M01°5 24M03°

system time 345 1Mo5% 2Mp0S 3M51°5  6M24° 10M235 16M07°

Table 2. Data on the numerical solution of the reduced normal
equations with 25 right-hand sides. Square blocks of
10 to 70 strips and high control point density at the
block edges.
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The system time of only 16 minutes 7 seconds for the block
of 9 800 models (9 731 unknowns) demonstrates strikingly the
efficiency of the CDC 6600 and of the HYCHOL programme.
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