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1. INTRODUCTION

At the Institute for Photogrammetry of Stuttgart University in the
summer of 1968 the development of a programme package for aerialtrian-
gulation with independent models was started.

The first objective was the programming of a strip adjustment proce-
dure. It was done with the intention of gaining programming experien-
ce for direct and iterative solutions of large systems of equations.
Furthermore, strip trianguiation still maintains a certain independent
importance besides block triangulation and it is also still interesting
for various scientific investigations. Thus the separate development

of an efficient and optimized strip programme seemed expedient. It
could be remarked that a programme for block adjustment should accom-
modate the strip just as a special case of a block. It is not conclu-
sive however, to consider a strip programme superfluous as a block pro-
gramme is not optimized with respect to the individual strip, and also
several requirements are entirely different such as for instance those
of the central core storage capacity of the computer and the use of
external memory stores or search programmes (for tie-points).

The computer programme for strip adjustment which has been developed
does therefore contain as a separate sub-programme that of strip for-
mation (that is connexion of models into a strip) the transformation
and the actual adjhstment of the strip. The programme is available in
both ALGOL and FORTRAN ASA-Norm computer lTanguages. For the testing of
the programme and for the practical applications carried out so far,
the Telefunken TR 4 computer and the CDC 6600 computer of Control Data
Corporation installed at Stuttgart University were used.

The programme working without external storage on the TR 4 is capable
of handling, by assuming for instance 8 points per model, a maximum
strip length of about 70 models. The CDC 6600 (with 128 K words
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in the memory core as against 32 K words for the TR 4) allows the ad-
justment of very much loager strips. Thus the strip adjustment program-
me covers a full range of strip adjustment required for practical pur-
poses and can be undertaken by medium capacity computers. As the com-
puting times clearly indicate, the programme is very efficient which
means that the costs for computing time are very low {see section 4).

._~tie point

() planimetric control point

O height control point

A planimetric and height control
point

Figure 1. Scheme of strip adjustment with independent models

2. THE MATHEMATICAL PRINCIPLE OF THE STRIP ADJUSTMENT METHOD

The computer programme is based on the concept as shown in figure 1.
For each model of the strip, the measured model coordinates (including
both projection centres) are considered as given and these coordinates
are related to an arbitrary cartesian coordinate system (X, Y, Z model
system). Two requirements are made: firstly it is assumed that the z-
axis points upwards, that means in approximately the same direction as
the z-axis of the terrain system. In addition all coordinate systems,
the terrain system included, must have the same sense of rotation. As
for scale and orientation of the individual models, with respect to
the terrain system, there are no restrictions. It is only necessary tha
the various model coordinate systems have more or less the same orien-
tation and scale.

A spatial similarity transformation is made for each model. The trans-
formation parameters (7 per model) of all models have to be determined
simultaneously. The determination is based on terrestrial planimetric
and height control points as well as the tie points with which adjacent
models are interconnected. The projection centres are treated in the
same manner as tie-points in the model space and their coordinates are
assigned the same weight.

The conditions for control and tie-points are realized by considering
the terrestrial coordinates in the transformation equations either as
given (control points) or as unknowns (tie-points). By this method the
adjustment problem is conveniently formulated in the form of observatio-
nal equations which are suitable for automatic processing. The adjust-
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ment of a strip consisting of n models with m tie-point coordinates
(projection centres included,but tie-point-coordinates which are control-
led excluded) has to determine in total 7n+m unknowns. From these the

m unknown coordinates of the tie-points are eliminated from the normal
equations and the reduced system of normal equations then to be solved
contains only the 7n unknown transformation parameters. Points which

have been measured once only and which do not contribute to any connec-
tion between models, are excluded from the adjustment. These points are
read in together with all measuring data but then they are automatically

sorted out and not carried through the adjustment. After all transforma-
tion parameters have been determined by the adjustment such points are
included in the transformation of each model within each iteration step.

By using the method described the models are connected to each other
and simultaneously fitted onto the terrestrial control points. Thus,
the method is rigorous in as much as all conditions of interconnection
and of fitting to ground control are taken into account simultaneously,
and the solution is direct. The term rigorous method applies of course
only to the mathematical concept of independent models and so in this
sense is equivalent to the rigorous bundle adjustment method of

H. Schmid |1].

Since the spatial similarity transformation is non-linear the adjustment
goes through the linearization of the observational equations starting
from approximate values of the unknowns and reaches the final solution
in an iterative way. In general three iteration cycles are sufficient.

The description of the procedure as a direct rigorous adjustment is not
affected by the fact that the computer programme provides in fact first
a strip formation (rigorous adjustment without the use of control points)
and then a linear planimetric transformation of the strip onto all pla-
nimetric control points. These steps serve the purpose of giving good
approximations for the final adjustment and they also provide means of
finding and eliminating gross errors. Throughout these steps the order-
ing of the measuring data in models has to be maintained which means
that in contradistinction with the more conventional procedures of
strip adjustment the arithmetic mean will not be taken, after strip
formation, of points measured twice.
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3. STRIP ADJUSTMENT PROCEDURE

3.1 Re]ationship between model and terrain coordinates

For the strip adjustment with independent models the central computa-
tional operation is the spatial similarity transformation, for the ob-
servational equations of which the following approach has been chosen:

-~ =
-V + k. = (1 + mj) Rj kij + koj (1)

i = point number assigned to the terrain point
j = model number
k: = vector of the terrain coordinates of point i
= vector of model coordinates of point i in model J

;j = vector of translation

mj = scale correction for model j

Rj = orthogonal rotation matrix for model j
Vij = vector of the corrections of the transformed model

coordinates to the ‘terrestrial coordinates of

control and tie-points

The point numbers i refer to the point in the terrain. They are main-
tained without additional coding for the corresponding model points (ij)

and thus enforce the identity cof points measured twice.

For reasons of convenience the following modification of the Rodriguez-
Caylay matrix is used as the rotation matrix (see |2]):

1,.2_,2_2 1 1
1+1(a -b"-c") ~Cty ab b+? ac
1 1 1 2.2 2 1
R.= —> —— | ct5 ab l+z(-a"+b"-c”) -a+y bc (2
J 1+%(a +bl+c ) 2
—b+é ac a+% bc 1+%(-a2-b2+c2)
J

For small rotations the parameters a, b, ¢ correspond to the conven-
tional notations for the three rotations w, ¢, x. The approach (1)
contains for each model 7 unknown orientation parameters (m, a, b, c,
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Xos Yg» zo) and for each tie-point coordinate (Xi’ Yis Zi) one unknown.
In the case of control points one, two or all three coordinates of the
vector ki are treated as known depending on whether the control point
in question is a height or planimetric control point or whether it is

of the combined type.
3.2 Linearized observational equations

The expansion of relationship (1) starting from approximate values
a; =b; =c; =m;, = 0 gives the Tinearized observational equation

Voo = Too t. + Ko = ki (3)

In addition to the previously defined magnitudes Vij’ ki’ kij which
are always referred to the system in which the linearization has been
carried out, the equation (3) contains the terms tj and Tij which are
defined as follows:

T
. = . . . M. . . . = -
tJ [aJ bJ cJ j on yoa ZOJ} vector of the trans
formation parameters
Tij = the coefficient matrix of the linearized similarity

transformation

Each measured model point(ij)contributes to the matrix Tij the follow-

ing coefficients:

Tij = 0 "Zij yij X5y -1 0 0
ij 0 X33 Yy 0 -1 0 (4)
[yij X3 0 “Zij 0 0 -1

In the strip adjustment programme the weight matrix of the obser-
vations is assumed to be a unit matrix, that is, all measured model
coordinates are considered as uncorrelated and are
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given weight 1. The terrestrial control coordinates are considered as
errorfree and thus receive no corrections., These premises are justi-
fied on the basis that for the time being they can be considered as

sufficiently practicable.

3.3 Direct formation of a reduced system of normal equations

According to the standard rules of adjustment by indirect observations
from linearized observational equations (3) the normal equation can be
formulated, they can also clearly be classified according to the two
groups of unknowns tj and ki' It has been previously demonstrated |3|
that this special structure of the normal equation makes it possible

to eliminate one of the two groups of unkpowns and consequently direct-
ly set-up a reduced system of normal equations containing only one
group of unknowns.

In general the number of transformation parameters tj is smaller than
the number of unknown coordinates of tie-points (7 n < m). Therefore it
is preferable to eliminate the coordinates ki of the unknown tie-points
from the normal equations. It is also useful to conveniently provide in
the computer programme for what is known as format reservations for the
redqced system, the number of unknown parameters tj being just 7x the
number of models of the strip, that means not dependent from the number
of points measured.

7x7 submatrices,
band width 14

Figure 2. Scheme of reduced
normal equations

Thus the computer programme omits the formation of the observational
and normal equations and goes directly to calculate the non-zero co-
efficients and non-zero absolute terms of the reduced normal equations
of the parameters tj. This system of coefficients forms a simple and
favourably structured band matrix (see figur 2). It is composed of
square sub-matrices of 7 x 7 elements. In a strip a model is only con-
nected with the 2 models adjoining it. Therefore the band width of the
coefficient matrix (counted from the main diagonal) extends only over
two sub-matrices to give a band width of 14 elements which is consi-
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dered very narrow. No attempt will be made here to describe in detail
the matrix operations to get the coefficients of the reduced normal
equations system. It is necessary that attention is paid to distin-
guishing clearly the three types of control points. The model coor-
dinates are introduced in units of kilometers in order to give the
various coefficients of the reduced normal equations (for instance pro-
portional to x2, to x and scalar) approximately the same magnitude and
thereby improve the conditioning of the equation system.

3.4 Solution of the reduced normal equations and transformation of
individual models
The reduced system of normal equations which for n models contains 7n un-
known parameters is directly solved according to the Cholesky method.
This requires that the coefficient matrix of the system is positive de-
finite. The mathematical approach to the adjustment problem as chosen
here ensures that this is so. The Cholesky solution is equivalent to a
direct Gauss solution as far das the numerical operations are concerned
(see |4]). This method is even somewhat better with regard to the nume-
rical acuity, particularly with very large systems of equations. The
storage and the solution of the reduced normal equations is done enti-
rely in the computer's central core without the need to employ external
storage. The programme occupies about 10 000 words, in addition to that
100nM + 4np words are required as working storage (where Ny = the number
of models and np = the number of points measured). For instance with 20
points measured per model the TR 4 computer can handle strips with up to
50 models whilst with the CDC 6600 computer it would be possible to hand-
le even more. As a consequence any strip adjustment which may occur in
practice is adequately covered by the use of this programme and compu-
ters of this type.

After the numerical solution of the transformation parameters the trans-
formed coordinates of the model points and the finally adjusted coordi-
nates of all tie-points have to be éa]cu]ated. For this one goes back to
the original formulation (1) of the spatial similarity transformation

and carries out the transformation model by model. Then by taking the
mean of all points appearing twice is yielded the final adjusted coordi-
nates of those points. It can be shown that thus taking the mean is equi-
valent to and gives the same results as a direct least squares solution.

By comparison of the transformed model point coordinates with those of
the terrestrial control points or adjusted tie-points one can obtain
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the final corrections Vij from which a number of statistical values
are derived; namely, the standard error of unit weight and mean squa-

re valuesfor various groups of the residuals.
3.5 The iteration process

Because of the approximate nature of the values to which the linear-
ized observational equations (3) refer, the solution of the normal
equations based thereondoes notyet represent the final solution, The
procedure has to be repeated with the improved approximations for the
unknowns. There are several ways to do this. Our computer programme
calculates using the improved transformation parameters the new model
coordinates kij’ by applying rigorously the spatial similarity trans-
formation. Starting from the newly calculated model coordinates, the
total process of adjustment is repeated. This means the observational
equations are again linearized according to equation . (3) and a reduced
system of normal equations is formed and solved (see figure 3). The
model coordinates kij which enter into the new iteration cycle are
provided as a result of the previous iteration., This procedure cor-
responds to an iteration process of second order of the Newton type,
which is distinguished by its very good convergency properties,

The iteration cycles are repeated until it is indicated by meeting the
requirements of a precision criterium that further iterations would

not yield substantial change anymore. The problem of which of the simple
precision criteria for stopping further iterations will be reliable also
with poorly conditioned systemshas not beencomplietely solved. Poor con-
ditioning prevails in strip adjustment problems when only a few control
points are given and in particular, when long strips are controlled only
at the beginning and at the end. In such cases the expressions such as
[vv] or [vv]k_l/[vv]k are not reliable. In our strip adjustment pro-
gramme the iterations are interrupted and brought to an end if the ma-
ximum absolute value amongst all coordinate increments compared with

the previous iteration amounts to less than FAK+1 um in image scale.

The factor FAK is read in with the measuring data and is in general
equal to 1. According to the experience gained so far this criterium
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has proven satisfactory. In general three iterations are sufficient
to complete the strip adjustment.

4, Comparisons between two methods of solving the normal equations

It was our intention to gain experience from this strip adjustment pro-
gramme, in particular with respect to the numerical solution of large
systems of equations. Furthermore it was hoped to be able to extra-
polate from such experience to the problem of solving even larger
systems of equations as might occur in block triangulation. Two me-
thods for solving reduced normal equations have been programmed: First
the Cholesky method for a direct solution and second the method of con-
jugate gradients which provides an iterative solution (see |5/).

Both methods have been programmed with comparable degrees of optimiza-
tion. Although the comparisons are based on hypothetical photogramme-
tric strips they can be considered realistic enough also for practical
cases.

4.1 Theoretical estimation of the required computing operations

It is possible to theoretically estimate the number of numerical ope-
rations required for both methods. If nM is the number of models in a
strip and if the numerical commitment is gaged by the number of multi-
plications required (neglecting some other operations) all the follow-
ing affords are a useful metre for comparison. Thus, for the solution
of the reduced normal equations by the
- conjugate gradients method:

~ 150 Ny multiplications per iteration are

required and for the

- Cholesky method:

~ 640 ny multiplications are required.

4.2 Empirical comparison
With the Telefunken TR 4 computer the following computing times for

solving the reduced normal equations have been obtained with the
ALGOL programme:
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- Conjugate gradients

10 models 10 iterations 6 sec = 0,060 sec/iteration and model

26 14 0,054
30 models 15 32 0,071
50 102 0,068
68 154 0,075
112 226 0,067
143 289 0,067

average computing time about 0.07 - Ny sec/Iteration

computing time for one multiplication tMu]t = ?,OOOSdsec. 4.1
according to 4.1

- Cholesky

0.18 sec/model
0.18 sec/model

30 models 5.5 sec
50 models 9 sec

average computing time 0.18 - ny sec

computing time for one multiplication tMu]t = 0,0003 sec.
(according to 4.1)

(The shorter time for multiplication is to be expected here as the

Cholesky method works in loops with Tinearpreogression).

Practical computing times equate oneCholesky solution of the normal
equations with about 2.5 iterations for the method of conjugate gra-
dients. If one considers the different times for multiplication, the
theoretical estimation is therefore confirmed.

The solution of the normal equations represents only a part of the

total process of strip adjustment, in particular, according to 3.5,
after the solution of the normal equations a new linearization has to
take place. Both methods investigated have to undertake such iterations,
these for the sake of clearity are denoted as first adjustment, second
adjustment and so on. The first practical calculations had already
shown that the Cholesky method which involves the direct solution of
normal equations would require only two, at most three adjustments
whilst the method of conjugate gradients with the same number of ad-
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justments would require in total several hundred iteration cycles.
We did in fact dive deeper into the empirical investigations because
the method of conjugate gradients which had been programmed first
showed unexpectedly long computing times.

4.3 Comparison for the total adjustment

For the investigation of the convergence properties of the two methods
it was necessary to provide somewhat more realistic data. For this pur-
pose the theoretically ideal model coordinates which were introduced
originally were transformed by random transformation parameters. In ad-
dition to that random observational errors were superimposed on the
model coordinates. These random figures were assigned the following
standard deviations: Of = Op = 0,05; 0. =0_ =g = g =0_ = 0,1;

c m X0 yo zo

Oy T Oy T 9y = 20 um in the image scale.

The repetition of the adjusting process was terminated if the incremen-
tal changes to the transformed model coordinates from the successive ad-
justments were smaller than 0,1 pm in the image scale or, if the alter-

ation of the standard error of unit weight remained below 10'4

((ook'1 - ook)/ook'1 < 10_4): For the strip adjustment the control
points were always assumed to be located in the four corners of the
strip.

Cholesky

With the solution of the normal equations according to Cholesky which
was terminated always after two iterations, the standard error of unit
weight o = /([vv|/n-u) showed the following behaviour:

- strip of 30 models, 210 unknowns:
after strip formation o, = 39,84074 um in image scale
after 1st adjustment g, = 22,74914 um
after 2nd adjustment g, = 22,74911 um

- strip of 50 models, 350 unknowns:
after strip formation o, = 29,30562 um in image scale
after 1st adjustment g, = 20,66543 um
after 2nd adjustment o, = 20,66542 um
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Conjugate gradients

For this method a strip with 30 models was wused (the same input data
as above). After three adjustment cycles (within which the reduced nor-
mal equations were always formed independently) and a total of 270 iter-

ations o, 9ave a value 22.75000 um.

This solution was still not as good as the one obtained after the first
Cholesky adjustment . Furthermore it was observed that the adju-
sted coordinates in the middle of the strip differred by 30 um in the na-
gative scale compared with resultsof the Cholesky adjustment. This means
that the solution had not yet iterated through although the second of
the computational cut-off criteria was fulfilled.

4.4 Conclusions

The results of the empirical investigation have shown that for the
numerical solution of the reduced normal equations about 2,5 iterations
of the conjugate gradient method are equivalent to a single direct
solution according to Cholesky. For the totaladjustment the Cholesky
method requires 2 to 3 adjustments independent of the strip length.
With the same numerical commitment only about 5 to 8 iteration cycles
of the conjugate gradient method could be carried out. But in fact

with three linearization steps ir total, several hundert iteration
cycles were required and this number increases with increasing strip

length.

The tests have confirmed that the conjugate gradient method converges
sufficiently fast only if very good approximate values are introduced.
Such approximate values are usually not directly available. Even if this
problem could be solved, there would still remain the problem of where
to terminate the iteration cycles in the case of the poor condition of
the equation system. Having duely considered this we made a clear de-
cision to discard the conjugate gradient method and apply the Cholesky
method for the direct solution of the reduced normal equations. The
appropriateness of this decision has in the meantime been borne out

by additional experience with iteration methods.
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5. Additional details

In the following a number of details about the various sub-programmes
are collected.

5.1 Data input

The data input is subject to only very few formal conditions. Point
numbering is arbitrary, but it must be referred to the terrain points
(including the ground control points). Data must be arranged by models
(as they are immediately obtained in the measuring of independent mo-
dels). Each model number is followed by the listing, in arbitrary
sequence, of the points measured in that model. Every point must be
accompanied by: number of the associated terrain point, model coordina-
tes x, y, z in hundredths of millimeters. Only the projection centres
are in a sense excepted, as they must always appear as the first two
points in the 1ist of points of a model. The model end is signalized

by the separation code -99. The control points with their ground co-
ordinates (in metres) are grouped separatedly according to horizontal
and vertical control points in two so-called zero models, both of which
have the model number 0. The end symbol -999 signifies the end of the
block of data.

The input appears in the print=out in the form of a complete list of
read-in data.

5.2 QOrdering of data
In this sub-programme the data are checked and models and points,

respectively, are ordered into the best sequence for the strip for-
mation and the strip adjustment.
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5.3 Strip formation

In this sub-routine the strip is formed by successive spatial simila-
rity transformation of each model to the preceding-one. The first mo-
del is kept fixed, no control points are used (see fig. 3}:
- For each model connexion it is checked whether there are at Teast

3 tie-points available.

- The transformation of model j+1 to model j is iterated until all
coordinate increments in model j+1 amount to less then 1 um in
model scale. The number of iterations is printed out and is usually
2 to 4.

- After each model connexion the coordinate discrepensies at the tie-
points are compared with a tolerance KS. If the x y z discrepancies
are larger than KS, the coordinates of all the tie-points of this
model connexion are printed out with their discrepancies. Strip
formation is continued.

- The transformed model points are printed out after the strip forma-
tion with a 1Tist of the corrections. Each point gets a label: EP =
single point, VP = tie-point, LH = control point in x y z, HO =
height control point, LA = planimetric control point.

5.4 Preliminary transformation of the strip onto control points

In this sub-programme the strip is transformed onto all planimetric con-
trol points by means of a planimetric similarity transformation. By this
large amounts of swing and large scale differences between strip and

terrain system are corrected for.

5.5 Strip adjustment

The sub-programme for strip adjustment is composed of the direct for-
mation of the reduced normal equations, and their solution, according to
the Cholesky method, and the calculation of the transformed model co-
ordinates. The strip adjustment is an iterative process which is con-
tinued until all coordinate increments between two successive iteration
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cycles are smaller than RFAK mm in the terrain (see fig. 3). After
each cycle the print-out shows 9, and mean square values of various
groups of the corrections. The strip formation and the preliminary
strip transformation ccunts as iteration cycle number 0. After com-
pletion of 'iteration cycles, the final terrain coordinates are cal-

culated.
5.6 Print-out

- The final print-out contains two lists of results:

- The final transformed points of the individual models with a list
of the corrections and the labelling of the points according to the
type of points: EP, VP, LH, HO, LA.

- The adjusted terrain coordinates of all points including the un-
altered control points ordered according to increasing point numbers.

5.7 Correction for earth curvature and refraction

%

If required, a sub-programme to correct earth curvature and refraction
can be called on. The correction is applied to the model coordinates

after the first strip adjustment.
5.8 Computer storage requirements and computing times

For the three versions of the programme the following storage capacity

is required:

TR 4 ALGOL programme 10 186 words
TR 4 FORTRAN programme 8 005 words
CBC 6 600 FORTRAN programme 12 633 words.

The approximate working storage space required is as follows:

number of words used = 100 ny + 4 np

where Ny = the number of models

n

b the number of points measured in all models.
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For the working storage the TR 4 computer has still about 9 000 words
available. The computing time for the strip formation and the strip ad-
justment is virtually proportional to the number of models. For strips
with not too many points per model we obtained the following values

for the total computing time:

TR 4 FORTRAN ~ 10 sec/model
CDC 6600 FORTRAN ~ 0,4 sec/model.

SUMMARY

The principles and the performance of a computer programme which is
available in ALGOL and FORTRAN ASA-Norm for strip adjustment by the
method of independent models is described. It carries out strip for-
mation, strip transformation and a rigorous least squares adjustment

by a simultaneous solution for all transformation parameters by the
Cholesky method. The solution wusually requires three iteration cycles.
The comparison of a direct (Cholesky) solution with an iterative solu-
tion by the method of conjugate gradients of the reduced normal equa-
tions is made with the results in favour of the direct solution. On the
Telefunken TR 4 computer (32 K words) strips of up to 70 models can be

treated. Using the Control Data computer CDC 6600 (128 K words) much
longer strips may be adjusted. The computing time is about 10 sec. per

a model on the TR 4 and 0,4 seconds on the CDC 6600.
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