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1. INTRODUCTION 

Detection and elimination of the systematic errors of photo­
grammetric image or model coordinates is one of the main ob­
jectives of recent research in aerial triangulation. This is 
understandable and consistent because not compensated syste­
matic errors change the image or model accuracy to the worse 
and can propagate very unfavourably during block adjustment 
(see Ill). A striking disagreement between empirically obtained 
accuracy figures and the corresponding theoretical expectations 
can be the consequence (see 121 and 131). 
The most direct way to reach the goal consists in the immediate 
determination of the systematic deformations by comprehensive 
system calibrations and the subsequent correction of the image 
or model coordinates. An alternative, but more indirect concept 
replaces the determination and elimination of the systematic 
errors by a compensation of their effects. This can be attained 
by proper flight dispositions in combination with more fold 
photo coverage or, in a more economic way, by appropriate post 
treatment of the adjusted block coordinates. A general inter­
polation method, used for this purpose is linear least squares 
interpolation (see 141). This method is very efficient in case 
of rather dense control. With a smaller number of control points 
however, the more general methods of system calibration yield 
significantly better results. In modern aerial triangulation 
therefore, priority is given f() these methods. 

· 

A real calibration of the photogrammetric system can be gained 
by test field calibration or by self calibrating block adjust­
ment. Test field calibration allows for a detailed and accurate 
determination of the systematic deformations of the photogramme­
tric data (see lSI). However, additional flight and measuring 
effort is required and the pre condition exists, that the cali­
brating data are representative for the practical project, 
actually treated. In contrast to that, self calibrating block 
adjustment only uses the project data themselves. Here, the 
-actual photogrammetric system is calibrated with regard to the 
actual terrestrial one. Consequently, only those systematic 
errors can be compensated, which show up on the basis of the 
available tie points and control points. 

The following representation of self calibrating block adjust­
ment is restricted to the simultaneous method. where the syste­
matic errors of image or model coordinates are compensated by 
additional parameters of the adjustment. An alternati ve solution, 
suggested by Masson d1Autume and �i cke� up by Schilcher, shall 
only be mentioned here. Thi� method determines and eliminates 
the systematic deformations iteratively, by repeated analyses of 
the residuals of the block adjustment (see 161 and 17 1). 
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2. STATE OF THE ART AND PRESENT PROB LEMS 

A first comprehensive report on photogrammetric block adjustment 
with additional correction parameters was presented at the Ottawa 
Congress 1972. The authors Bauer and MUller were able to show 
results, by which the efficiency of simultaneous self calibration 
was demonstrated impressively 181. Two years later. at the 
Commission III Symposium in Stuttgart several papers on this 
topic were presented. Bauer, Brown 191, Schut 1101 , Salmenpera, 
Anderson and Savolainen 1111 reported on self calibrating bundle 
adjustment and Ebner and Schneider presented a first application 
to independent model block adjustment 1121. 

Although simultaneous self calibration today is recongnized as 
the most efficient concept for compensation of systematic errors 
in aerial triangul�tion there are essential problems which stil l 
have to be sol ved. Three main problems can be distinguished here. 

The first one concerns the proper choice of the additional para- , 
meters. As a study of the above mentioned literature shows, the 
individual authors are still experimenting with the number and 
ty pe of correction terms. Furthermore it is noticed, that the 
additional parameters ar•e treated as block invariant terms. This 
means, that identic systematic deformations are supposed for all 
images or models of the block. Thi s supposition however, is only 
correct in case of really h omo � eneous projects (one camera, film, 
measuring instrument and so on). In all other cases a variation 
of the systematic errors within th e bl ock must be expected. 
Summarizing it can be stated, that a general concept for the 
choice of correction terms is still missed. Such a concept would 
require several different groups of additional parameters and a 
sufficient number of effective parameters per group. 

The second problem fol lows from the fact that highl y correlated 
or insignificant ldditional parameters l essen the block stabil ity 
and change the accuracy of the adjusted block coordinates to the 
worse. Therefore the algebraic correlations between the individual 
correction terms and the correlation with the orientation para- ( 
meters shoul d be as small as possi ble. The significance of the 
computed correction terms can be checked by proper statistical 
tests. If some of  the additional parameters are found insigni­
ficant the block adjustment sh ould be repeated without them. 
Although these requirements are known in prfnciple, frequently 
not enough attention is payed to them in practice. 
The- third problem is a pure fy-opera ffona 1 one-and con cer�s the 
comfort of self calibrating block adjustme�t programs, In the 
opinion of  the author the user of  such an extended program 
shouldn1t be burdened with the selection of  the additional para­
meters and the critical valuation of their amounts, as computed 
by the adjustment, Consequently this task should be automized 
as far as possible. 

The following chapter contains recommendations for a solution of 
the problems quoted above, For that purpose a strategy is sugge­
sted, consisting of a sufficiently general functional and stocha­
stic model and of proper significance tests. In that way self 
calibrating block adjustment shall be standardized to a certain 
extent and the practical application shall be simplified� 
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Finally, in chapter 4 of the paper practical results of block ad­
justments by bundles and by independent models are presented, 
being based on the self calibration strategy, as suggested here. 

3. THE SUGGESTED STRATEGY 

3.1 The Functional Model 

The implementation of simultaneous self calibration in bundle 
block adjustment or independent model block adjustment consists 
in an extension of the observational equations by the effect of 
suitably chosen additional parameters. The task o f  these para­
meters is compensation of the systematic errors of image or model 
coordinates, recognizable from the actually given control points 
and tie points. 

In contrast to the above mentioned programs, which are restricted 
to block invariant correction terms, the functional model, presen­
ted here, is using several different groups of additional para­
meters if the systematic deformations vary within the block. The 
operational aspects of this measure will be discussed in chapter 
3 . 3 . 

With the selection of the additional parameters of bundle adjust­
ment the objective is pursued to compensate all the systematic 
deformations, appearing in 9 image points. figure 1 shows the 
schematized distribution of the 9 points and the polynomial terms, 
determinable here. 

- Figure 1 -
For x and y together 18 terms are obtained, but 6 of them are 
compensated by the orientation parameters of the individual 
images. The remaining 12 correction terms, called b1 to b12 are 
formulated as orthogonal to each other and with respect to the 
6 orientation parameters. Figure 2 shows their contributions to 
the observational equations and their effects on the image points. 
The orthogonality of the additional parameters leads to well 
conditioned normal equations and allows for separate statistical 
checking of the individual correction terms, computed by the 
adjustment (see chapter 3. 3). 

- Figure 2 -

The formulation of the additional parameters according to figure 
2 exceeds the corresponding suggestions of Schut 1101 and Gott­
hardt 1131, although the most dangerous systematic errors are also 
fully compensated by them. 

The functional model of independent model block adjustment is 
extended correspondingly. Fi gure 3 shows the schematized photo­
grammetric model, consisting o f  6 points and the polynomial 
terms determinable in this case. 

- Figure 3 -

The 3·6 = 18 terms, obtained for x, y and z are complemented by 
3 more terms, by which the systematic errors of the perspective 
center coordinates x, y and z are compensated. From the 21 terms 
7 are considered by the spatial similarity transformation, put up 
for every model� Therefore only 14 additional parameters remain. 
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If the block adjustment is based on the well proved planimetry­
height-iteration, as used in the computer program PAT-M43 1141, 
8 correction terms refer to the planimetric block adjustment and 
6 are used with height block adjustment. The corresponding para­
meters, called Pl to pa and h1 to h5 again are formulated as 
orthogonal to each other and with respect to the transformation 
parameters of planimetry and height. The formulation of the 
correction terms and their effect on the model points is shown 
in figure 4, 

- Figure 4 -
By the additional model parameters of figure 4 the correction 
terms suggested in 1121 are surpassed. 
With ordinary applications of aerial triangulation the functio­
nal models as presented here guarantee a fully adequate compen­
sation of the data inherent systematic errors and can serve as 
standard models. In case of essentially more points per image 
or model (e.g. cadastre) however, the use of further correction 
terms can be suitable. 

3. 2 The Stochastic Model 

First of all it seems to be obvious to treat the additional 
parameters as free unknowns, as done in IBI and 1111. This 
would lead to the following formulation: 

v1 = Ax - By - f (la) 

In (la) f is the observation vector, containing the measured 
image or model coordinates, x denotes the vector of unknown 
terrain coordinates and transformation parameters and y is the 
vector of the unknown additional parameters. 

Two facts however, are ignored with the formulation (la): the 
relatively small size of the systematic errors and the fact 
that they vary from project to project with regard to sign and 
size (the theoretical mean value is zero). Therefore it is more 
suitable to treat the additional parameters as observations of ( 
amount zero with appropriate weights. This can be done by 
keeping (la) and adding the following set of observation equa­
tions: 

v2 = y - 0 (lb) 

The weights of the additional parameters can simply be chosen 
according to the expected amounts of the correction terms or 
somewhat smaller. 

If some of the additional parameters can be derived from cali­
brating data, which are representative for the actual practical 
project, the obtained amounts can directly be introduced into 
the corresponding lines of the observation equations (lb), re­
placing the amounts zero. The weights of these parameters can 
then be determined from the accuracy of th� calibration. 

The formulation (la), (lb), which is also used by Brown 1 91 and 
others, leads to banded bordered normal equations, with the 
additional parameters forming the border. In that way favourable 
computing times are guaranteed. 
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The suggested stochastic model shows several advantages. First 
of all) the treatment of the additional parameters as observa­
tions is completely general. Free unknowns and constanti are 
special cases of observations and can easily be implemented by 
the special weights 0 and oo (1020). Furtheron the appropriate 
weights of the additional parameters guarantee optimal accuracy. 
The most important advantage however, is the avoidance of un­
reliable results. 

Such results have to be feared if the additional parameters are 
treated as free unknowns and the available control points and 
tie points don•t allow for an accurate determination of all the 
correction terms, put up. The normal equation matrix then be­
comes ill conditioned and in extreme cases even singular. In the 
latter case the minimum equation of the adjustment is fulfilled 
by every arbitrary value of the corresponding parameters. 

This danger is avoided when the additional parameters are treated 
as observations. The residuals v2 then directly influence the 
minimum condition, which leads to a definite solution for 
all correction terms used. The geometrically poorly determined 
parameters in this case show up in form of insignificant amounts 
of the corresponding correction terms. 

Last not least it shall be mentioned that self calibrating block 
adjustment with additional parameters can also be treated as a 
collo�ation-problem. The appendix contains the derivation of the 
corresponding equation system and shows it•s equivalence with 
the observation equations (la), (lb). 

-·-··--·-- . --- -----...,-

3.3 Operational Points of View 

Besides an efficient mathematical model for simultaneous self 
calibration the secure and comfortable execution of the extended 
block adjustment ts the most important potnt. Therefore. the 
additional burden of the program user should be l imited to an 
additional input, determining, which group of additional para­
meters has to be assigned to the occasional image or model. 

With the establishment of the parameter groups it is assumed, 
that the systematic deformations only change if a corresponding 
change of project parameters occurs (different cameras or camera 
installations, different films or film processing, different 
measuring instruments and so on). A dependency of the systematic 
def ormations on the flight direction is avoided if the image or 
model coordinate system itself relates to flight direction. 

Consequently, a new group of additional parameters is only re­
quired if at least one of the project parameters has changed. 
That means that the number of parameter groups usually will be 
sma 1 1  . 

When the self calibrating block adjustment is executed, the com­
puted correction terms have to be checked critically by statisti­
cal means, for that the covartance matrix of the add itional un­
knowns y is neededL whtch can be obtained from a partial in­
version of the normal equation matrix, The numerical effort of 
this operation is relatively small. 
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The statistical checking succeeds in two subsequent steps. 
At. first it is investigated, whether the corresponding correc­
tion terms of the different parameter groups differ signi fi cant­
ly from each other. If this is not the case the concerned para­
meters are combined to one paramete r . Thereby the individual 
correction terms (b1� b2, • • •  ) can be treated separately. This 
is possible because the additional parameters are nearly ortho­
gonal and influence each other only slightly. With the corre­
spondingly combined parameters the block adjustment then is re­
peated. 

In the second step the significance of the remained correction 
terms is check ed and weight oo (1020) is gi ven to the insigni­
f ica nt parameters. A last repetition run then gives the fina l 
results. 

It easily can be re a liz e d , that both ste p s of this procedure can 
be performed automatically by the p rog ra m , so that the program 
user has not to be burdened by the v aluat io n of t he obtained 
correction terms and the according co nse quence s . 
The sop�isticated two step procedure, suggested here, guarante es . 

that only the well de te rmined additional parameters are finally 
used. In that way optimum reliability is attained. 

Of course, the computing time of block adjustment increases when 
simultaneous self calibration is implem ented . In practice how­
ever, the additional amount will not be very high. because the 
correction terms usually will only be put up with the very last 
runs, whilst the first runs by wh i ch the gross error s of the 

____________ ___ d �-t a_a r� __ g�_'(:e c_t�_<!_ __ �D_9_�_:i_!!l_i�� ted, �� 11 --��_performed as up to now, 

4. TE ST RESULTS 

For a practical test of the suggested strategy a part of the 
test b l ock Oberschwaben w a s used. The author appreciates that 
the OEEPE has made this valuable material available. The chosen 
sub block is built by the wide angle strips 5, 7, 9 and 11 and 
consists of 100 models (terrain area = 20 · 62.5 k m2). All con­
trol points and tie points were targeted. The flight was per­
formed with a Zeiss RMK A 15/23 camera at a photo scale of 
1:28 000. A Zeiss PSK stereocomparator was used for image 
measurement. 

Starting from the same image coordinates the block adjustments 
were· performed by bundles and by independent models. In the 
second case the models we re formed computationally. 

The bundle block adjustments were computed at the Technical 
University of M unich , using the self c a lib rat i ng program, deve­
loped by Dr. GrUn 1151. The flexibility of this program with 
respect to the functional model allowed to use exactly the 12 
additional image parameters, suggested in 3.1. The block adjust­
ments by independent models were performed at Stuttgart Uni­
versity, us i n g the self calibration program of Mr. Schneider. 
This program was developed to test the concept of simultaneous 
self calibration b e fore an integration into the program package 
PAT-M 1141. For the given support the au t hor is grateful to 
Dr. GrUn and t o  Mr. Schnei der. 
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FTgure 5 shows the- test bloc'k' and the individual control distri­
butions, used in planimetry and height, The terrestrial points, 
which didri1t serve as control points, were used as check points. 
(180 to 250 occasionally). 

- Figure 5 -
For all 4 strips of the test block the same project parameters 
can be assumed. From there it follows that only one group of 
additional parameters has to be put up for the wh ole block. The 
justification of this measure was confirmed by test adjustments 
with strip invariant correction terms, which didn1t show signi­
ficant variations of the parameter amounts from strip to strip. 

Because all correction terms are treated as block invariant para­
meters the present test is not able to demonstrate the fu ll 
efficiency of the suggested strategy (see 3,3). The separation 
of the block invariant correction terms into significant and in­
significant terms however, can be shown here. 

The significance tests were performed on the 99% level. From 
the beginning it shall be mentioned that the obtained correction 
terms proved as only slightly dependent on the control distri­
bution. With the poorest density the additional bundle parameters b1, 
b2 ,  b6, b7, b8 and b11 were found as significant� Their comm�n 
effect on the image points represents the systematic im�ge de­
formations and is shown in figure 6 (b = 92 mm). The maximum 
values amount to 9 �m in x and in y. ----

- Figure 6 -

The further results of the bundle block adjustments are summa­
rized in table 1. Because all image coordinates were treated as 
observations of weight 1 the standard deviation of unit weight 
a0 here directly represents the mean accuracy of the image co­
ordinates. Without self calibration o0 is highly dependent on 
the control distribution used. This clearly indicates the 
presence of systematic errors, which influence the residuals 
and a0 the less the poorer the control density is. Simultaneous 
self calibration reduces a0 by a factor 1.3 to 1 .. 6 and elimi­
nates the dependency on .the control distribution almost com­
pletel y. With o0 = 3. 2 �m the accuracy of the image coordinates 
is close to the accuracy limit, attainable today at all. 

- Table 1 -

In table 1 the accuracy of the adjusted block coordinates x, y 
and z � s represented by t�e RMS values �x y and ��, wh ! ch were 
determ1ned from the coord1nate erro rs at ihe plantmetrlc check 
points and at the check he ights. Both, �� y and �z are reduced 
to the photo scale. Simultaneous s�lf cal f brat ion improves the 
accuracy the more, the less favourable the control distribution 
is. The factor of improvement increases up to 3 .3 in plani­
metry and up to 2.3 in height. 
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T�e �ccuracy fi�ures a0, �x�y and �z, obtained with �elf _cali­
bratlon� are �l1g�tly smaller t�an t�e cor responding resultst 
w�ic� Bauer and MUller �a� publ is�ed in lSI� T hese relate to 
a Oberschwab�n subblocl. s onsisttng of the wide angle strips 
1, 3, 5, 7, 9 and were obtained with 3·4 correction terms (3 
successive adjustments with 4 additional parameters each). 

With the block adjustments Dy independent models the planimetric 
correction terms P1� P2, P3� p4, Pa and the height terms h2 , h3, 
h4, hs have proved as significant. Their common effect on the 
model points represents the systematic model deformations and 
is shown in figure 7 (� = 92 mm). The maximum values amount to 
10 �m in x, 7 �m in y and 11 �m in z. As was to be expected the 
results of figure 7 agree well with the model deformations 
being computed from the systematic image errors of figure 6 .  

- Figure 7 -
The individual results of the planimetric block adjustments by 
independent models are summarized in table 2. Because the model 
coordinates x, y were treated with weight 1, the standard devia­
tion of unit weight a0p directly represents the mean accuracy 
of the planimetric model coordinates. With simultaneous self 
calibration this accuracy figure decreases to a0p = 4.3 �m. The 
corresponding figure �x�' which estimates the mean accuracy of 
the adjusted block cooroinates in x and y, is improved by a 
factor 1.6 to 2.9. 

- Table 2 -

Table 3 shows the results of the height block adjustments by 
independent models. a0h here represents the standard deviations 
of the model heights and �z describes the mean accuracy of the 
adjusted heights of the block. The accuracy improvement, attained 
by self calibration, is much .smaller than in planimetry. This is 
true for croh as well as for �z· The only one exception appears 
with the extreme control distribution i = 25, where the rather 
poor accuracy �z = 65.0 �m is reduced to the reasonable value l 
�z = 26 .7 �m. 

- Table 3 -

The results, listed in table 1 and in tables 2 and 3 were ob­
tained from the same data material. Therefore they can be used 
for an accuracy comparison between bundle and independent model 
adjustment. Without self calibration most of the bundle results 
�xy and �z are larger than the corresponding figures of the 
bl bck adjustments by independent models. Obviously this is caused 
by the systematic data errors (see also 13 1). 
As soon as the systematic errors are compensated adequately, 
which is guaranteed by simult�neous self calibration, the situa­
tion changes and the bundle results prove as superior. as ex­
pected by theory. Table 4 shows the accuracy figures �x y and �z, 
obtained with both adjustment methods and the accuracy ;atios 
�models I �bundles' The ma�imum rat io is 1.2 in planimetry and 

----



- 9 -

1,4 in height1 Because of the limited accuracy of the control 
points and check points. by which the accu racy figures � are 
disto rted the m ore � t he smaller t hey are. the real accuracy 
advan tage of bundle block adjustment c an even be expected as 
higher . 

- Table 4 -
Altogether the test results demonstrate, that by simultaneous 
self calibration excellent accuracies can be obtained , even jf 
systematic errors of considerable size are existing . As an 
example we cite the RMS va1ues �x y obtained with the extreme 
control distributions i = 8 and i

'
= 11. Here, both adjustment 

methods lead to amounts of 7 �m to 8 �m at the phot o scale or 
20 em to 2 2  em in the terrain. If we compare these accuracies 
with the control spacings of 20 km to 3 1  km we obtain ratios 
which are better than 1:1os. 
Finally, the importan t statement can be made, that the test 
results, obtained with simultaneous self calibration meet the 
theoretical expectations in a twofold way . Firstly the standard 
deviations of unit weight cr0 , cr0 P. and cr 0h are prac ti ca lly in de­
pen dent of the control distribution and secondly the empirical 
ratios �/cr0, representing the error propagation with the bloc k 
adjustment, are in well agreement with the corresponding theo­
retic a l  p redi c tions, bei n g  based on ran dom errors on ly .  These 
fac ts indicate,that the sys tematic deformations o f the image an d 
model coordin ates are exten sively compensated and that the re­
maining errors c an be considered as random. 

5. CONCLUD ING REMARKS 

This reduction of the data errors to the purely random component 
is the most important result of the test. It confirms , that the 
used strategy for self calibrating block adjustment is fully 
effect i ve in the present case. For a real conclusive valuation 
of the suggested strategy however, further and more generally 
drafted tests with block variable systematic errors and diffe­
rent overlap configurations still have to be performed . 

APPEND IX 
Self calibrating block adjustment with additional parameters, 
treated as a collocation problem. 

Let us first formulate the functional model of block adjustment 
as: 

Ax - 1 = o ( 2) 

f is the observation vector, containing the measured image or 
model coord inates and x is the vector of the unknown terrain 
coordinates and transformation parameters. By x an f the theo­
retic al values of x and f are men t . 

The mathematical model of collocation supposes, that the actual 
observation vector f differs from the theoretical one 1 due to 
two random vectors n and s with the statistical expectations 
zero (see Moritz l16j). 



f = f + n + s 

E [n] = 0 

E [s] = 0 

- 1 0 -

(3) 
( 4 ) 
( 5 ) 

n is called noise or uncorrelated component and s is the signal 
or correlated part or f. Correspondingly, the noise covariance 
matrix Cnn (usually) is a diagonal matrix, whilst the signal 
covariance matrix Css is rather packed. In general, noise and 
signal are not correlated with each other (Cns = 0). 

In the present case of self calibrating block adjustment the 
noise represents the purely random errors of the photogrammetric 
data. The signal s however, is interpreted as the effect of the 
additional parameters p on the image or model coordinates: 

s = Bp (6) 

The additional parameters p themselves are assumed as random 
variables with the expectation zero. 

E [p] = 0 (7) 

With (7) the signal ( 6 )  meets the requirement (5). If the 
covariance matrix of the additional parameters p is denoted by 
CPP' the signal covariance matrix Css follows from ( 6 )  as: 

Css = B Cpp sT (8) 
The problem is solved by least squares. For that purpose the 
residual vectors v1 and v2 are attached to n and p. Considering 
{3) and (6)  we then obtain: 

Ax - (f + (n+v1) + B (p+v2)) = 

Ax - vl - Bv2 - f = 0 (9) 

The minimum condition to be satisfied reads: 

( 

T - 1 
vlcnnvl + T -1 

v2Cppv2 = min { 1 0) ( 

Equation (9) represents a conditioned adjustment with unknown 
parameters, which however. is equivalent to the observation 
equation system (la), (lb): This can be shown by back substi­
tution of (lb) into (la) which directly leads to formula (9), 
For a detailed proof see Schwarz 1111. Because of ( 4 )  and (7) 
the obtained results x, v1 and v2 are unbiased. 

The additional parameters usually are common to many images or 
models occasionally. In this case formulation (fa), (lb) is 
superior to formulation (9), because it leads to normal equa­
tion matrices of more favourable structure (banded bordered 
system) and of better numerical condition (see llBI). 

, 
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ADDITIOIAL IMAGE PARAMETERS FO!It SELF CALIBRATIOII 
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ADDITIONAL MODEL PARAMETERS FOR SELF CALIBRATION 

ty 
X 

6X • + Pl X + PIXY 

Ay • - P13y/l + Pax 

+ Pax(y2·2�2/3) + P7(Y2-2,2/3) 

Figure 4 

61 • 

,.,z • 

'''z • 

,.,z · 

+ p1x(y2·2b2/3) + Pe(Yl·2�1/3) 

( 

l 



4 

... ..... 

.. 

"' 

4 
4 

• 

.. 

1... 

• 

.. 

.. 

• 

4(1 1111 

... 

... 

.. 
.. 

• 

� . 

.. 

.. 

• 

... 
4 

... 

• � 
1.4 .. 

.. 
... � 

.. � 
� ... 

..... 

� .. 
, ... II 

<Ill 

4 ... 

� ... . � 
4 4 .. • • ... 

.. � .. 
It ,.lc " .. � .. 

r- 4 
.. 

� • � .. 
4 It 

I" 
.. 

... 
.. 

.. ... � .... 
... 

.. � 
, ... • 

- 15 -

.. 

... 

.. 

... 

4 
.. 

• 
1.. 

4 

� 

----
II 

co 
II 

... 

� 
II 

N 
tl 

.. 

... 

II .... -

• 
... 

� ... 

� 
• 

... 

.. 

.. 

.. 
� 

• 

� 

[4 
4 

4 
4 

4 
4 

4 
4 

... . 

�� ... 
" 4 

.. 

� ... 
.. ... 

4 

... 

� 

, .. ..  
... 

.. ... 

..
... 

... 
... 

.. 
.. ... ... ... 

... 
... 

.. <Ci ... 

• 

4 

4 
4 

4 
4 

4 4 
4 

... 
4 � 

... .. 4 
... ... � 

. ... • 
.. 

... 
• 

.. 
... � 

: .. I .. 

� .. � 
... 

4 

4 
4 

• 

N 

� 

"' . 
• 

-. 

... 

.. 

4 
4 

4 

4 

... 

• • • 
4 • - �· 

...4 
.. 

... 
.. 

. ... 

� � 
, ... � 

4 .. ... 
... 

• , 

II 

.. 

N 

it 
·-

ClO 
II 

... ... 
• 

... ... 
... 

14 
"14 .. 

II 
• 

.4 
.. 

• 

.. ... I" 
... 

... ... 

... ..4 I � 

L!) 

<U 
s... 
::s 
C"l .,..... 



-

I 
-

j '-

- 16 -

fl; ght 
direction 

- 10 f.lffi 

flight 
lt;;:;;;;;;;;;;;;;;;;;;;-ft- direction 

J 

........ 10 llm F igure 7 

Figure 6 

contro 1 
ve rsion 

x,y z 

i=2 i =4 

; =4 i=8 

i =8 i=12 

(i=ll) i =25 

fl i ght 
H----�'-;1'--.... d i recti on 

BUNDLE BLOCK ADJUSTMENT 

Oberschwaben, 1:2 8 000, w ide ang le 

Blo ck F rankfu r t, 10 4 pho t o s, q = 20 % 

without with accuracy 
self calib ration self cali b ration i mp ro vemen t 

o0 ! f.lm ! llx,y f1 z I f1 ml o0 ! llm l llx,y llz l llm l <:ro Jlx,y 

5.3 8.8 15.8 3.3 5.2 12.2 1.6 1.7 

4.7 14.0 22.2 3.2 5.6 14.6 1.5 2.5 

4.1 24.1 28.4 3.2 7.2 16.5 1.3 3.3 

4.0 24.9 44.2 3.2 8.0 18.9 1. 3 3.1 

Tab 1 e 1 

Jlz 

1.3 

1.5 

1.7 

2.3 

( 

( 
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PLANI METRIC BLOCK ADJUSTMENT BY INDEPENDENT MODELS 

Ober s chwaben, 1:2 8 0 0 0 ,  wide ang le 

Block Frankfur t, 1 0 0  models, q = 20 % 

without with accuracy 
cont ra 1 s e 1f ca 1 i brat ion self calibration improvement 
ver s ion 

f1op lllm I llx ,y lllml cr0p l llm l llx
,y l llml crop llx,y 

i=2 6.8 9.9 4.4 6.3 1.5 1.6 

i=4 6.5 13.4 4.3 6.6 1.5 2.0 

i=8 6.2 20 .o 4.3 7.1 1.4 2.8 

( i =11) 6.1 22.1 4.3 7.7 1.4 2.9 

HEIGHT BLOCK ADJUSTMENT BY INDEPENDENT MODELS 

Oberschwaben, 1:28 00 0 ,  wide angle 

Block Frankfur t, 1 0 0  mode ls, q = 20 % 

without wit h accu racy 

control self calib ration self calibration improvement 

version 
aoh l llml )l z I jlm I aoh l llml )l z I )lm I 

i=4 

i=8 

i=12 

i=25 

0oh 

8.4 14.7 7.6 14.1 1.1 

8.3 19.0 7.6 17.1 1.1 

8.3 22.1 7.6 18.9 1.1 

8.3 65.0 7.6 26.7 1.1 

SEL F CALIBRATING BLOCK ADJUSTMENT 

Obersc hwaben, 1:28 0 0 0 , wide angle 

Block Frankfurt, 100 models, q = 2 0  % 

cont ro l ver s ion bundles models 

x,y z lllx,ylllmi 

i=2 i=4 5.2 

i:::4 i =8 5.6 

i=8 i=12 7.2 

( i =11) i=25 8 .0 

ll2 lllml 

12.2 

14.6 

16.5 

18.9 

llx,y l llm l 

6.3 

6.6 

7.1 

7.7 

)l z I )lm I 

14.1 

17 .1 

18.9 

26.7 

llz 

1 .0 

1.1 

1.2 

2.4 

ratio 

llx,y 

1.2 

1.2 

1.0 

1.0 

Tab le 2 

T ab le 3 

llz 

1.2 

1.2 

1.1 

1.4 

Table 4 


