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ANALYSIS OF COVARIANCE MATRICES

by H. Ebner, Stuttgart, Fed.Rep. Germany

SUMMARY

The paper starts with a representation of the concept of inner accuracy which was
introduced by P. Meissl in 1962 and which is applied frequently in Geodesy. Pro-
ceeding from this concept a theory is developed, allowing for a rigorous analysis
of covariance matrices. By this theory any given covariance matrix can be dis-
integrated into a covariance matrix of simpler structure and the effect of a set
of filter parameters. An example shows how the analysis works and demonstrates
the power cof the theory.

THE CONCEPT OF INNER ACCURACY

In 1962 P. Meissl introduced a concept into Geodesy which allows to filter the
effect of an arbitrary set of parameters out of a given covariance matrix. The
accuracy remaining after filtering is called inner accuracy |1], 2], [3].

In Geodesy the filter parameters most of the time are restricted to shifts, rota-
tions and eventually a scale factor. In this case the inner accuracy is the ac-
curacy being liberated from the effect of shifts, rotations and scale. More-

over most of the geodetic applications of the theory of inner accuracy are rela-
ted to free adjustments |4|, |5], |6]

It should be emphasized, however, that the concept of inner accuracy is neither
restricted to free adjustments nor to a certain number or type of filter para-
meters.

FORMULATION

We start from a random vector x and the associated covariance matrix M. The vec-
tor x is split into the expectation vector E [x] and the increment vector dx:

x = E[x] + dx (1)

From dx we separate the effect of the filter parameters dt, being represented by
the filter matrix G. The remaining vector is called dx. The associated covariance
matrix we call Q.

dx = dx - Gdt (2)

The filter parameters dt now are determined so that the trace of Q becomes a min-
imum.
trQ - Min (3)

The derivation of the vector dt and of the corresponding covariance matrix R is
given in |2|. The results are:

dt = (676) 6Tdx
R = (676) Ye"ma(6Ta) !
Inserting (4) into (2) we get (I = unit matrix):
dx = (1-6(676) *6T)dx (6)

0 = (1-6(6T6)"*aT)m(1-6(6Ta)"*6") (7)

The covariance matrix Q represents the inner accuracy of the random vector x
which remains when the effect of the filter parameters dt is eliminated. The re-
sults (4) and (6) are identic with the results of a least squares adjustment,
which fits the vector x onto the vector E [x] using the parameters dt and
minimizing the sum of squares of the residuals dX:

dxTdX —=Min (8)
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From there it follows that the minimum conditions (3) and (8) are equivalent. This
is shown in detail in proof 1 (see appendix). At the same time Q is identified as
the covariance matrix of the residuals.

GENERALIZATION

By introducing a weight matrix P the minimum conditions (8) and (3) can be gener-
alized to:

dX PdX —> Min
trQP —=Min (10)

The conditions (9) and (10) are equivalent again (see proof 2, appendix). Analogue
to the more general minimum condition (10) equations (4) to (7) are generalized
to:

dt = (67P6) 16 TPdx (11)
R = (67p6) *aTpMpa(6TpPG)~t (12)
dX = (1-G(G7PG) 16TP)dx (13)
Q = (I-6(6TPG) %6TP)M(1-PG(GTPG) 1GT) (14)

Converting equation (2) the random vector dx now can be expressed as a linear
function of the components dx and dt:

dx
| dt

dx = dX + Gdt = [I 6] (15)
Analogue to (15) the covariance matrix M of the random vector dx can be represen-
ted as:

Bl

o u! {I
_ J 1T pl T
Mm=11 6 U7 R] |G

= Q + 6UT + ugT + GRrGT (16)

The submatrix U of the common covariance matrix of the components dx and dt can
be obtained by applying the law of error propagation to equations (13) and (11):

U= (I-6(6TPG)"26TP)MPG(GTPG)"1 (17)

The existence of U demonstrates that dx and dt are correlated with each other.
A THEORY FOR ANALYSIS OF COVARIANCE MATRICES

In a previous paper a theory was presented, which proceeds from the concept of
inner accuracy and allows for a rigorous analysis of a given covariance matrix]7y
In the present paper this theory is derived slightly different and the whole pro-
blem is treated more comprehensively. By analysis we understand a rigorous dis-
integration of M into a covariance matrix K with a structure as simple as possib-
le and the effect of a set of filter parameters, represented by a coefficient
matrix G.

DERIVATION OF THE THEORY

We search for a random vector dxg with the associated covariance matrix K and for
a filter matrix G which allow for a rigorous separation of the given random vec-
tor dx according to:

dx = dx, + Gat (18)
At the same time we dispose of the weight matrix P, which was
arbitrary up to now and set:

p &gl (19)
The vector de and the covariance matrix K can be represented
analogue to equations (15) and (16)
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- [axy
- r
dXK = dXK + GdtK = LI G dtK_ (20)
- e
k=1[1 6] sile"] =0, +6s6 (21)

Because of (19) dxy and dty are not correlated with each other.
Qg and S follow as:

0 = kK - 6(6Tk 16) 167

s = (6Tk 1g) 7t
It can be shown that the random vector dx can be separated
according to (18) if and only if by use of the same filter matrix
G both vectors dx and de lead to the same residuals:

dXy = dx (24)

(see proof 3, appendix).

Equation (24) is equivalent with the condition:

0y = 0 (25)

Usinc equations (22) and (23) we convert the condition (25) into the more practi-
cable form:

K=0Q+ GSG' (26)

Combining equation (16) and (21) and considering condition (25) the covariance
matrix M now can be disintegrated analogue to the separation of dx in (18):

] u} o 0

o
<+ 01 oe) WP Rl L ] 16T - kecuTeuaTsoTe”

=
]

with

—
1]
el
1
w

(27)

R and S are positiv semidefinit matrices, but the difference matrix T is not
necessarily positiv semidefinit. Equation (27) represents the aspired analysis
of the covariance matrix M. The meaning is that M can be expressed rigorously
by the covariance matrix K and the effect of filter parameters with the co-
efficient matrix G. As can be shown condition (26) is necessary and adeauate
for the validity of equation (27) (see proof 4, appendix). Therefore (26) can
be used as a proper criterion regarding the choice of K and G.

CRITERION I

The given covariance matrix M can be analysed rigorously according to equation
(27) if and only if the chosen matrices K and G fulfil condition (26). The per-
formance of the analysis can be simplified essentially by replacing the choice of
K by the choice of the weight matrix P which is related to K according to equa-
tion (19). Then the covariance matrix K needed in criterion I is estimated as
follows:

E [002} - E [diTPdij /v = trQP/r (28)
=il
_ e [o,2] P (29)

H
E {Ooﬂ_is the expectation of the variance factor being computed from the resid-
uals dx. The redundancy r is determined by the number n of random variables
minus the number u of filter parameters.The proof of equation (28)and a dis-
cussion of equation (29) is given in the appendix (proof 5).
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As soon as criterion I is fulfilled the question appears whether all filter para-
meters effect the analysis or whether some of them can be omitted without effect-
ing criterion I. Therefore we look for a criterion which detects filter parame-
ters without influence over the analysis. For that purpose we split the vector At
into the components At] and 4t and represent equation (27) accordingly as:

fla v vl fe - -
_{ UI Rig Reglm |7 Sap 84 GI
= ke Eeler Uy Riy Ry, S12 52 Pg
with : K+G1UI+U1GI+61T11GI+G1T1QGg+G2TI2GI+G2U2+U2GE+G2T2262
Tig = Ry = Sy
Tio = Ryp - 5y,
Too = Ry = 5y, (30)

The aspired criterion can be formulated as follows:

CRITERION II

The analysis (30) is not effected by the filter parameters at2 and can be repre-
sented without puting up G2 if and only if the following equations (31) are valid

T22 =0

U, =0 (31)

(see proof 6, appendix).

SPECIAL CASES OF THE ANALYSIS

(27) represents the general case of an analysis of the given covariance

Beside this various special cases of the analysis are possible. Two of
be treated in

Equation
matrix M.
them, being of particular interest and appearing frequently shall

detail.

SPECIAL CASE A U=20, T = positiv semidefinit

With that equation (27) is simplified considerably to:

M=K+ GTG' (27a)
Considering (27a) together with equation (18) we see that here T is the covari-
ance matrix of the filter parameters aAt. Moreover from (27a) it follows that dx

and at are not correlated with each other. In this case equation (18) can be K

interpreted as
nents of noise

a separation of the random vector dx into the independent compo-
and signal, being used in collocation |8].

SPECIAL CASE B U2 =0, T22 = positiv semidefinit
With that equation (30) is simplified to: )
M = K+G1UI+U1GI+G1TllGI+GlT1QGg+G2TIQG§+G2T22G£ (30a)
Equation (30a) can be split properly into
M = MG U +U G +6, T, G +G T 6 +6,T G, (30b)
M = K+G,T, G, (30¢)
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The covariance matrix M differs from M due to the effect of the filter parameters
st1 only (see proof 7, appendix). If the filter parameters aty are of no particu-
lar interest, equation (30a) therefore can be replaced by the much simpler dis-
integration (30c). Considering equation (30c) we see that here To2 is the co-
variance matrix of the filter parameters at2. Moreover 4t2 and dxg are not cor-
related with each other.

PERFORMANCE OF THE ANALYSIS

The following block diagramshows the steps of the analysis and their sequence.
The analysis starts with a proper choice of the weight matrix P and the filter
matrix G, representing the stochastic model and the functional model of the ana-
lysis. The necessity to assume a proper mathematical model a priori we know from
least squares adjustment and regression analysis respectively. Of great importan-
ce in this context is the fact that the suitability of P and G can be checked
rigorously by criterion I.

Equation (26) which is used in criterion I is Analysis of the covariance matrix M
identic with the basic equation of a posteriori according to (27)

variance and covariance estimation, given in |9].

Therefore the corresponding procedures can be I

zged sucessfully to estimate K. Most of the ~—~ﬁ Choose ¥ amd § preuarly ]
ime it will be sufficient to assume uncor-

related random variables dxg and to estimate L

their weights only. Concerning the choice of e
the filter matrix G use can be made of the fact Q_ﬂfrm (L5
that filter parameters without influence over Compute E[6."] from (26)
the analysis are detected by criterion II. K from (29)
Therefore it can be recommended to start the e from (23)
analysis with puting up relatively many filter

parameters. Of course they have to be Tinear k

independent. As filter parameters often the
coefficients of regression polynomials will be
used.

| \
Is criterion >
fulfilled ? /

yes

no

With the practical application frequently it
will not be possible to fulfill criterion I
rigorously. In this case, suitable statistical
test procedures have to be applied to decide
whether criterion I is fulfilled or not. If
equation (26) being used in criterion I isn't

U fron (17)

valid exactly we must not apply criterion II Compute R from (12)

rigorously. The question whether some of the T from (27)

filter parameters don't effect the analysis

in this case again has to be answered by - /

applying suitable statistical tests. Check whether criterion LI
is fulfilled for some of

COMMENT the filter parameters J

The analysis of a covariance matrix M accord-
ing to equation (27) has to be discriminated
from a decomposition of a covariance matrix I
by factor analysis [10|. This method of multi-
variate analysis is characterized by:

W
Check vihether (27) can
be simplified accerding

to special casc A or B J

r = An + D (32) Figure 1

A is the factor loading matrix. The number of collumns of Ao is fixed usually.

D is a diagonal matrix. Equation (32) is less general than (27) because no co-
variance term corresponding with U is existing in (32). As opposed to the analy-
sis (27) where P and G are chosen a priori and improved if necessary, in case of
factor analysis A and D are estimated directly. The corresponding estimation pro-
cedures are relatively complicated and depend on the assumption of normal distri-
buted variables. The estimation of A and D is followed by an interpretation of
the factor loadings of A. With the analysis treated here this step is avoided
completely because the meaning of the filter parameters is given a priori.
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APPLICATIONS OF THE THEORY

The concept presented in this paper is a suitable tool to analyse any given
covariance matrix, obtained theoretically or empirically. This shall be demon-
strated by the following analysis of the theoretical covariance matrix of the
z coordinates of a photogrammetric model.

For that purpose we suppose vertical wide angle photoaraphy. The base length
we assume as b = 1 and the flying height as h = 153/92.
The 8 model points have the same heights and are 3 A 4

distributed regularly (see figure 2). Points 3 and 5
are control points in planimetry and height, point 2
is an additional height control point (free adjust- o/
ment) . 1 L5
The image coordinates we assume as uncorrelated observa-
tions of variance 1. Putting up a rigorous least squares .8
adjustment according to the bundle method we obtain the
covariance matrix M of the 8 model heights as a sub- 5 &h—6
matrix of the complete inverse of the normal equation
matrix: FIGURE 2
8.30 - ! F y 1.38 1.38
M = . . - 17.30 - -0.70 5.02 0.52
-0.70 - 17.30 0.52 5.02
1.38 - . 5.02 0.52 8.86 1.51
1.38 c 0.52 =« 5.02 1.51 8.86

The variances and covariances belonging to the height control points 2, 3 and 5
are zero of course. Due to the existing symmetry the heights 4 and 6 as well as
7 and 8 are of equal accuracy.

The analysis of the covariance matrix M we start assuming P = I for the weight

matrix and putting up 6 filter parameters according to a regression polynomial

of degree 2 in the model coordinates x and y. With that we obtain the following
filter matrix G:

]

1,2 2

Loxg ¥y X XY Yy
_ . !

© T ! 2 2
!

1 xg ¥g , X5 Xg¥g Ve

The first three filter parameters allow for a shift in z and for tilts in x
and y direction. These parameters are needed for levellina the model. The other
three filter parameters are put up arbitrary. Performing the analysis we obtain:

E [0,%] = 5.53
K =5.53 1

This covariance matrix K and the chosen filter matrix G fulfil criterion I.
That means that K and G allow for a rigorous disintegration of M according to
equation (27). The matrices U and T follow as:
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S 0.92  0.92 ]
' -0.92 -0.92 - - : -
_ -0.46 -0.46 -0.15 |
u=luu, E=§ 0.46 0.46 -0.15 |
' -0.46 -0.46 0.15
0.46 0.46 0.15
o . 0.61
i -0.61 . . _—
[ 0.92 -0.46 | -1.38 -1.38]
. 46 20.28 | -12.45 4.15
_o 1112 b e i z2.46 i 2.77____:_.
jIQT22j 1 -1.38 -12.45 5.53
2.77 3.47
-1.38  4.15 _

Because criterion I is fulfilled criterion II can be applied rigorously. Doing
this we see that the last filter parameter atg going with y2 has no influence
over the analysis of M (T66 =0, Ug = 0).

If we collect the first three levelling parameters in the vector 4t; and the last

three in the vector 4t2 and if we divide the matrices G, U and T correspondingly

we see that the premises of special case B are given:
Uy = 0, T,, = positiv semidefinit, M o= K+G,T,o6,

T

M differs from M due to the effect of the levelling parameters 4t; only. We are
allowed to replace M by M because M is arbitrary with respect to these three
parameters due to the arbitrary choice of the three height control points 2, 3
and 5. If we fix three other heights, we obtain different results for Uq, T11
and Ty, but we get Uy = 0 again and Ty, remains unchanged.

From these facts it follows that M can be represented by K = 5.53 I and the ef-
fect of two filter parameters, going with x2 and xy respectively. These two para-
meters are uncorrelated with each other and their variances are 5.53 and 3.47
respectively.

The results of this analysis can be interpreted as follows: The covariance matrix
K describes the accuracy of the model heights without the effect of the orienta-
tion parameters of the bundle adjustment. This accuracy is obtained keeping the
orientation parameters of both photos fixed. Then all model heights get the same
accuracy and are not correlated with each other. The variance in z is

2.c2/b2 = 2.1532/922 = 5.53,

Among the orientation parameters of the images 1 and 2 the only one of interest
here are those which lead to model deformations in z being not compensated by

the filter parameters at] of model levelling. These orientation parameters are

¢é or ¢ causing a cylinder shaped deformation in z and wl or wp causing a twist-
ed model. The filter parameters going with x2 and xy are able to compensate those
deformations rigorously. The filter parameter going with y2 is not needed at all
and gets a variance of zero accordingly.
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APPENDIX

Proof 1
Replacing (8) by the expectation E [AYHHY] and considering

E [dx] = 0 we get:
£ [axax™]) = tro

e [oxTax] = € [tr(ax"dx)] = € [tr(dwax")]

Proof 2

Analogue to proof 1 weobtain:

e [ax?pax| = E[tr(axPan)] - e [tr(axax’p)]

= tr(E [dxdx"]P) = trQp

E Eﬁd?T p

Proof 3
From (18) follows (24):

dx, = (1-6(67P6)""a"P)dx, = (I-6(67PG) 16TP) (dx-G At)
From (24) follows (18):

dx = dx+Gdt = dYK+Gdt = de+G(dt-dtK) B de+G.At
Proof 4

(26) is identic with (25). From (25) follows (27) directly.
From (27) follows (26):

kK = H-60F-uet-gneteseT = 0+GEET

Proof 5
(28) follows from proof 2:

El6,2 = e [axTPax ] /v = trQp/r

(29) 1is an approximate estimation of K. The rigorous relation
between K and P should be:

K = EEGO2_‘K p-t

with E

—60{}K being computed analogue to above as:

£ [5,9 = E[oxgpax, |/ = tro s

A rigorous estimation of K using E [OOZ_K is impossibfile because

K 1tse1f is needed for the determ1nat1on of E [ ]K Therefore

E l ,’ being determinable replaces E LO %] in (29). The better
the cho1ce of P and G the closer is E (o 2 to E L ] As soon
as K, computed from (29) fulfils criterion I we obtai

E Loozj = trQP/r = trQyP/r = E [ooz]K
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The rigorous validity of
e ls 2 -1
K=E[o2] P 1 -
can be shown starting from K = cP and proving ¢ = E Loo ]K
T 2] T=lay=1pT
21 = = -G(G K "G) GP)/r
E [o,2], = trQgP/r = tr(KP-G(G ) )/

= (trkp-tr(6Tk™6) T 6TPG)/r = c(n-u)/r = ¢

Proof 6
From (30) and (31) follows (O-QK)l = 0, which is necessary and
adequate for the validity of (30) using G; only

ol -1,T
(Q-0,), = (I-G (GIPG )7"G P)(M-K)(I-PG (GIPG ) "G)

- (To T -1,T T T T T T T
= (I-G,(6,PG, ) "G P)(G U +U G +G T G +6 T, G +G, T .G )

T -1.Ty _
(I-PGl(GlPGi) Gl) =0
For proving that (31) follows from (30) and (Q-QK)1.= 0
we separate (GTPG)_linto:

Ail A12

T S ( T
(67p6) 7" = LA, A

U, and T22, appearing in (30) we represent explicitely as:

C y1.prpTppy-1aT )
U, = (1-G(GTPG)™"6"P)(M-K)P (B, A, +G A )

T S N o i T .
= (I G1A11G1P GQA12G1P G1A12GQP G2A22GQP)(M K)(PG1A12+P62A22)

_ aT T T )
T, = (A, G P+A, G P)(M-K) (PG A +PG A )

22

In the following proofs we consider:

T T
Al A GlPG1 GiPG2 ) I
i T T 2
12 22 G2PG1 6,FG, L

From 0 = (Q-QK)1 follows U, = 0:

_ _ Tp_ T orTp_ Th_ T
0 = (I GlAilGlp G2A12GlP G1A12G2P G2A22G2P)

(Q-Qy ), (PG, A, ,+PG,A, )

ol To_r aT nTp_ Tp_ T ) T -1,T
= (1-G,A, 6,P-G,A 6 P-G A G P-G,A G P)(I-G (6]PG ) "6IP)

) ) T -1,T
(M-K) (1-PG, (6,PG ) "6, ) (PG A +PG A )

_ _ Tp_ T Tp_ Tp_ T _
= (1-G,A, 6, P-G,A G P-G A GP-GA GP)(MK)

(PG A, +PG A ) = U

222 2
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From 0 = (Q-QK)1 follows T P 0:

_ (aT

0 = (A 12 G P+/—\22 2 P)(Q- QK)i(P61A12+PG2A22)
AT

= (R1,0, P+A22G2P)(I'G1(61PG1) ‘6 P)

(M-K) (I-PG, (G;PG ) 16, ) (PG,A, ,+PG,A, )

- T -

= (A],GIP+A, GIP)(M-K) (PG A ,+PG,A ) = T,

Proof 7

We put up G1 only and prove that M and M lead to the same
covariance matrix of residuals:

(0-Q), = (1-6,(GIPG,) "GIP)(M-M)(I-PG, (G;PG, ) "6])

_ T =45 T
= (I Gi(GipGl) GlP)(G U +U G +G1T1161+G1T1262+62T12G1)

T “1.Tx _
(1-PG, (6,P6,) 776G ) = 0

From (Q-a)1 = 0 follows that M and ﬁ differ due to the
effect of A t1 only.
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