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ANALYSIS OF COVARIANCE MATRICES 
by H. Ebne r, Stuttg art, Fe d.Rep. Ge rm any 

SUMMARY 
The pape r starts with a re pre se ntation of the conce pt of inne r accuracy which was 
introduce d by P. Me issl in 1962 and which is applie d fre que ntly in Ge ode sy . Pro­
ce e ding from this conce pt a the ory is de ve lope d, allowing for a rig orous analysis 
of covariance m atrice s. By this the ory any give n covariance matrix can be dis­
inte g rate d into a covariance m atrix of simple r structure and the e ffe ct of a se t 
of filte r param e te rs. An e xam ple shows how the analy sis works and dem onstrates 
the power of the theory. 
THE CONCEPT OF INNER ACCURACY 
In 1962 P. Me issl introduce d a concept into Ge ode sy which allows to filte r the 
e ffe ct of an arbitrary se t of parame te rs out of a g ive n covariance matrix. The 
accuracy re m aining afte r filte ring is calle d inne r accuracy J1J. J2J, J3J. 
In Ge ode sy the filte r param e te rs m ost of the tim e are re stricte d to shifts, rota­
tions and e ve ntually a scale factor. In this case the inne r accuracy is the ac­
curacy being libe rate d from the e ffe ct of shifts, rotations and scale . More-ove r m ost of the g e ode tic applications of the the ory of inne r accuracy are re la-
ted to fre e adjustm e nts 141, JsJ, 161. 
It should be e m phasized, howe ve r, that the conce pt of inne r accuracy is ne ithe r 
re stricte d to fre e adjustme nts nor to a ce rtain num be r or ty pe of filte r para­
m e te rs. 
FORMULATION 
We start from a random ve ctor x and the associate d covariance m atrix M. The ve c­
tor x is split into the expectation vector E [x] and the increm ent vector dx: 

x = E [x] + dx ( 1) 
From dx we se parate the e ffe ct of the filte r parame ters dt, be ing re pre se nte d by 
the filter m atrix G. The re maining ve ctor is calle d dx. The associate d covariance 
m atrix we call Q. 

dx = d x - Gd t ( 2) 

The filte r param e te rs dt now are de te rm ine d so that the trace of Q be come s a min-
im um . 

trQ -+ Min ( 3) 

The derivation of the ve ctor dt and of the corre sponding covariance matrix R is 
g ive n in J2 J. The re sults are : 

dt = (GTG)-iGTdx 
R = (GTG)-iGTMG(GTG)-1 

Inse rting (4) into (2) we ge t (I = unit matrix): 
dx (I-G(GTG)-1GT)dx 

Q = (I-G(GTG)-1GT)M(I-G(GTG)- 1GT) 

(4) 
(5) 

( 6) 
( 7 ) 

The covariance matrix Q re pre se nts the inne r accuracy of the random ve ctor x 
which re m ains whe n the e ffe ct of the filte r parame te rs dt is e liminate d. The re ­
sults (4) and (6) are ide ntic with the re sults of a le ast square s adjustm ent, 
which fits the ve ctor x onto the vector E [x] using the parafTle ters dt and 
minim izing the sum of square s of the re siduals dx: 

(8) 
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From there it follows that the m1n1mum conditions (3) and (8) are equivalent. This 
is shown in detail in proof 1 (see appendix). At the same time Q is identified as 
the covariance matrix of the residuals. 

GENERALIZATION 

By introducing a weight matrix P the minimum conditions (8) and (3) can be gener­
alized to: 

dxTPdx �Min 
trQP __,. Min 

( 9) 
( 10) 

The conditions (9) and (10) are equivalent again ( see proof 2, appendix). Analogue 
to the more general minimum condition ( 10) equations (4) to (7) are generalized 
to: 

dt (GTPG)-1GTPdx (_11} 
R (GTPG)-1GTPMPG(GTPG)-1 ( 12) 

dx (I-G(GTPG)-1GTP)dx ( 13) 

Q ( I-G(GTPG)-1GTP)M(I-PG(GTPG)-1GT) ( 14) 

Converting equation (2) the random vector dx now can be expressed as a linear 
function of the components dx and dt: 

dx = dx + G d t = [I G] [ ��J ( 15) 

Analogue to ( 15) the covariance matrix M of the random vector dx can be rep res en-
ted as: 

ro ul [ �TJ ,-- G] LuT i 
GUT UGT GRGT M = I_ I Ri = Q + + + ( 16) _) 

The submatrix U of the common covariance matrix of the components dx and dt can 
be obtained by applying the law of error propagation to equations ( 13) and (11): 

( 17 ) 

The existence of U demonstrates that dx and dt are correlated with each other. 

A THEORY FOR ANALYSIS OF COVARIANCE MATRICES 

In a previous paper a theory was presented, which proceeds from the concept of 
inner accuracy and allows for a rigorous analysis of a given covariance matrixj7 J. 
In the present paper this theory is derived slightly different and the whole pro­
blem is treated more comprehensively. By analysis we understand a rigorous dis­
integration of M into a covariance matrix K with a structure as simple as possib­
le and the effect of a set of filter parameters, represented by a coefficient 
matrix G. 
DERIVATION OF THE THEORY 

We search for a random vector dxK with the associated covariance matrix K and for 
a filter matrix G which allow for a rigorous separation of the given random vec­
tor dx according to: 

dx = dxK + G.At 
At the same time we 
arbitrary up to now 

p � K-1 

( 18) 
dispose of the weight matrix P, which was 
and set: 

(19) 
The vector dxK and the covariance matrix K can be represented 
analogue to equations (15) and (16) 
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li dxK dxK + GdtK = L 
lOK ·l G J K II Gj L sj G T L 

Because of ( 19) dx K and dtK 

OK and S follow as: 

OK = K - G(GTK-1G)-1GT 
S (GTK-1G)-l 

G] 
= 
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[dxKJ dtK 

OK + GSGT 

are not correlated with each 

( 2 0) 

( 2 1  ) 

other. 

( 2 2) 

( 2 3) 

It can be shown that the random vector dx can be separated 

according to (18) i f  and only if by use of the same filter matrix 

G both vectors dx and dxK lead to the same residuals: 

dxK = dx (24) 

(see proof 3, appendix) . 

Equation (24) is equivalent with the condition: 

OK = 0 (25) 

Usins equations (22) and (23) we convert the condition {25) into the more practi­
cable form: 

K = 0 + GSGT ( 26) 

Combining equation (16) and (21) and considering condition {25) the covariance 
matrix M now can be disintegrated analogue to the separation of dx in (18) : 

M K + I) 
.-l. ,

-
I l 

s J ' I_G T J = K +GuT+ u G T + G T G T 
with 

T R - S ( 2 7) 

R andS are positiv semidefinit matrices, but the difference matrix T is not 
necessarily positiv semidefinit. Equation (27) represents the aspired analysis 
of the covariance matrix M. The meaning is that M can be expressed rigorously 
by the covariance matrix K and the effect of filter parameters with the co­
efficient matrix G. As can be shown condition (26) is necessary and adeauate 
for the validity of equation (27) (see proof 4, appendix) . Therefore (26) can 
be used as a proper criterion regarding the choice of K and G. 
CRITERION I 

The given covariance matrix M can be analysed rigorously according to equation 
(27) if and only if the chosen matrices K and G fulfil condition (26) . The per­
formance of the analysis can be simplified essentially by replacing the choice of 
K by the choice of the weight matrix P which is related to K according to equa­
tion (19) . Then the covariance matrix K needed in criterion I is estimated as 
follows: 

E [ cr 0 2 J = E [ dxT P dx J 
K Er zl p-1 

/r = trOP/r (28) 

(29) �0 J 
E r o �_is the expectation of the variance factor being computed from the resid­
uals dx. The redundancy r is determined by the number n of random variables 
minus the number u of filter narameters. ihe proof of equation (28) and a dis­
cussion of equation (29) is given in the appendix (proof 5). 
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As soon as criterion I is fulfilled the question appears whether all filter para­
meters effect the analysis or whether some of them can be omitted without effect­
ing criterion I. Therefore we look for a criterion which detects filter parame­
ters without influence over the analysis. For that purpose we split the vector 6t 
into the components 6t 1 and 6t2 and represent equation (27) accordingly as: 

M r 

i uT ' 1 
K+ �G1 G2J U� 

u1 u,l [ 

R11 :J : RT 12 

. l lr l 

s11 s , � GT 1 
sT s22 GT 12 2 

with 

K+G1U�+U1GT+G T GT+G 1 1 11 1 1T12G�+G2T�2G�+G2U�+U2G;+G2T22G� 
\1 R11 - \1 
T12 R12 - \2 
T22 R22 - s22 ( 3 0) 

The aspired criterion can be formulated as follows: 

CRITERION II 

The analysis (30) is not effected by the filter parameters 6t2 and can be repre­
sented without puting up G2 if and �nly if the following equations (31) are valid 

T22 0 
0 ( 31) 

(see proof 6, aprendix). 

S PECIAL CASES OF THE ANALYSIS 

Equation (27) represents the general case of an analysis of the given covariance 
matrix M. Beside this various special cases of the analysis are possible. Two of 
them, being of particular interest and appearing frequently shall be treated in 
detail. 

SPECIAL CASE A U = 0, T = positiv semidefinit 

With that equation (27) is simplified considerably to: 

M = K + GTGT ( 2 7 a) 

Considering (27a) together with equation ( 18) we see that here T is the covari­
a-A-e-e-ma-�r i x o f the f i 1 �e r-pa-r am e t e r s 6 t . Mo-reo-v e r�f rom ( 2 7 a ) i-t--f-o-1-1-ows t h a t d x K and 6t are not correlated with each other. In this case equation (18) can be 
interpreted as a separation of the random vector dx into the independent compo­
nents of noise and signal, being used in collocation 1 81. 

SPECIAL CASE B u2 = 0, T22 
= positiv semidefinit 

With that equation (30) is simplified to: 

M = K+G UT+U GT+G T GT+G T GT+G TT GT+G T GT 1 1 1 1 1 11 1 1 12 2 2 12 1 2 22 2 

Equation (30a) can be split properly into 

M M+G1U�+U1G�+G1T11G�+G1 T12G�+G2T�2G� 
M 
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The covariance matrix M d i ffers from M due to the effect of the f i lter parameters 
btl only (see proof 7, appendix). If the f i lter parameters btl are of no particu­
lar i nterest, equation (30a) therefore can be replaced by the much s i mpler d i s­
integrat i on (30c). Consider i ng equation (30c) we see that here T22 i s  the co­
variance matr i x of the filter parameters 6t2. Moreover 6t2 and dxK are not cor­
related with each other. 

PERFORMANCE OF THE ANALYSIS 

The following block diagram shows the steps of the analys i s  and the i r  sequence. 
The analys i s  starts w i th a proper cho i ce of the we i ght matr i x  P and the f i lter 
matrix G, representing the stochast i c  model and the funct i onal model of the ana­
lys i s. The necess i ty to assume a proper mathematical �odel a pr i or i  we know from 
least squares adjustment and regression analys i s  respect i vely. Of great i mportan­
ce in this context i s  the fact that the su i tability of P and G can be checked 
rigorously by criterion I. 

Equation (26) which i s  used i n  cr i ter i on I i s  
i dentic w i th the bas i c  equat i on of a posterior i 
var i ance and covar i ance estimation, given in 191. 
Therefore the corresponding procedures can be 
used sucessfully to estimate K. Most of the 
time it w i ll be suffic i ent to assume uncor­
related random variables dXK and to estimate 
their weights only. Concern i ng the cho i ce of 
the filter matr i x  G use can be made of the fact 
that filter parameters without influence over 
the analys i s  are detected by criter i on II. 
Therefore it can be recommended to start the 
analysis with put i ng up relatively many filter 
parameters. Of course they have to be l i near 
i ndependent. As filter parameters often the 
coefficients of regress i on polynomials w i ll be 
used. 

With the practical application frequently it 
w i ll not be possible to fulf i ll cr i ter i on I 
r i gorously. In th i s  case, suitable stat i st i cal 
test procedures have to be applied to dec i de 
whether cr i terion I i s  fulf i lled or not. If 
equation (26) being used i n  cr i ter i on I i sn't 
val i d  exactly we must not apply cr i ter i on II 
r i gorously. The question whether some of the 
filter parameters don't effect the analys i s  
i n  th i s  case aga i n  has to be answered by 
apply i ng suitable stat i stical tests. 

COMMENT 

The analys i s  of a covariance matr i x  M accord­
i ng to equat i on (27) has to be discr i m i nated 
from a decompos i tion of a covariance matr i x  � 
by factor analys i s  1 10 I· Th i s  method of mult i ­
variate analys i s  i s  characterized by: 

( 3 2) 

Analysis of thr covariar1c0 nlJtrix M 
according to (27) 

---> ,------ -----��---L--��s_: �-�"r-������ly 

I_ 
no 

�···- ------ -- \Y _____ - -- ---1 
Q frw (H) 
[J,lr':'J'fr0" (<'8) Compuce o 

K fl-o,- (�g) 
S frorc (t'J) 

------ --
�-------

- --
Is criteri� 

fulfilled ? � 
yes ,------ --------1 

U froc1 (17) 
te R fro"'. (12ij 

T ftC i1 (27) _T __________ _ 

·------�L...........---�-----[hcck v;hether cri�crion LI I s fulfilled for some of 
he fi 1 ter parameters J 
--��=�-l--�===-[h r c k v; he t he r ( 2 7 ) c an l e simplified according 
o spccicl case J; or B 
----·-·--------------� 

figure 1 

A i s  the factor load i ng matr i x. The number of collumns of A is fixed usually. 
D i s  a diagonal matr i x. Equation (32) i s  less general than (27) because no co­
var i ance term corresponding with U i s  ex i st i ng i n  (32). As opposed to the analy­
s i s (27) where P and G are chosen a pr i or i  and i mproved i f  necessary, i n  case of 
factor analysis A and D are est i mated d i rectly. The corresponding estimation pro­
cedures are relatively compl i cated and depend on the assumpt i on of normal distr i ­
buted variables. The estimat i on of A and D i s  followed by an i nterpretat i on of 
the factor loadings of A. W i th the analys i s  treated here th i s  step i s  avo i ded 
completely because the meaning of the filter parameters is g i v�n a pr i or i . 
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A P PLICATIONS OF THE THEORY 

The concept presen ted in this paper is a suitable tool to analyse any given 
covariance matrix, obtained theoretically or empirically. This shall be demon­
strated by the following analysis of the theoretical covariance matrix of the 
z coordinates of a photogrammetric model. 

For that purpose we suppose vertical wide angle photoaraphy. 
we assume as b = 1 and the flying height as h = 153/92. 
The 8 model points have the same heights and are 
distributed reg ularly (see figure 2). Points 3 and 5 
are control points in planimetry and height, point 2 
is an additional height control point (free adjust-
ment). 

The image coordinates we assume as uncorrelated observa­
tions of variance 1. Putting up a rigorous least squares 
adjustment according to the bundle method we obtain the 
covariance matrix M of the 8 model heights as a sub­
matrix of the complete inverse of the normal equation 
matrix: 

8. 30 1. 38 1. 38 

M 17. 30 -0. 70 5. 02 0. 52 

-0.70 17. 30 0. 52 5. 02 

1. 38 5. 02 0. 52 8. 86 1. 51 

1. 38 0.52 5. 02 1. 51 8. 86 

The base length 

3 � 4 

-7 

1 1-------o 2 

.8 

5 t.:s 6 

FIGURE 2 

The variances and covariances belonging to the height control points 2, 3 and 5 
are zero of course. Due to the existing symmetry the heights 4 and 6 as well as 
7 an d 8 are of equal accuracy. 

The analysis of the covariance matrix M we start assuming P = I for the weight 
matrix and putting up 6 filter parameters according to a regression polynomial 
of degree 2 in the model coordinates x and y. With that we obtain the following 
filter matrix G: 

The first three filter parameters allow for a shift in z and for tilts in x 
and y direction. These parameters are needed for levellina the model. The other 
three filter parameters are put up arbitrary. Performinq the analysis we obtain : 

- 2J E Lo 0 = 5. 53 

K = 5. 53 I 

This covariance matrix K and the chosen filter matrix G fulfil criterion I. 
That means that K and G allow for a rigorous disintegration of M according to 
equation (27). The matrices U and T follow as: 
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0. 92 0. 92 

-0. 92 -0. 92 
-0. 46 -0. 46 -0.15 

-i ' 

I = ' 
I : 0. 46 0. 46 -0. 15 

i -0 0 46 -0. 46 0. 15 

0. 46 0.46 0. 15 

0.6 1 
-0. 6 1  

1 0. 92 -0. 46 - 1.38 -1.38l 
il -0. 46 20. 28 - 12.45 4.15! 

1T T ' · l ; 11 12 ! 0 0 -2. 46 i 0 2.77 ° i 
' T  = i - --------------- - ------ - -- - --------- - --- - - , 

:T12T22i !-1. 38 - 12.45 5.53 I 
- . .J I 

I 

I - 1. 38 

2 0 77 3.47 J 4. 15 

Because criterion I is fulfilled criterion II can be applied rigorously. Doing 
this we see that the last filter parameter 6t6 going with y2 has no influence 
over the analysis of M (T66 = 0, u6 

= 0). 

If we collect the first three levelling parameters in the vector 6t1 and the last 
three in the vector 6t2 and if we divide the matrices G ,  U and T correspondingly 
we see that the premises of special case B are given: 

M differs from M due to 1he effect of the levelling parameters 6t1 only. We are 
allowed to replace M by M because M is arbitrary with respect to these three 
parameters due to fue arbitrary choice of the three height control points 2, 3 
and 5. If we fix three other heights, we obtain different results for U1, T11 
and T 12 but we get u2 = 0 again and T22 remains unchanged. 

From these facts it follows that M can be represented by K = 5.53 I and the ef­
fect of two filter parameters, going with x2 and xy respectively. These two para­
meters are uncorrelated with each other and their variances are 5.53 and 3.47 
respectively. 

The results of this analysis can be interpreted as follows: The covariance matrix 
K describes the accuracy of the model heights without the effect of the orienta­
tion parameters of the bundle adjustment. This accuracy is obtained keeping the 
orientation parameters of both photos fixed. Then all model heights get the same 
accuracy and are not correlated with each other. The variance in z is 
2 . c2;b2 = 2. 1532;922 = 5.53. 

Among the orientation parameters of the images 1 and 2 the only one of interest 
here are those which lead to model deformations in z being not compensated by 
the filter parameters 6tl of model levelling. These orientation parameters are 
�1 or � 2 causing a cylinder shaped deformation in z and wl or w2 causing a twist­
ed model. The filter parameters going with x2 and xy are able to compensate those 
deformations rigorously. The filter parameter going with y2 is not needed at all 
and gets a variance of zero accordingly. 
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Proof 1 

Replacing (8) by the expectation E [dxTdx] and considerino 

E [dx] = owe get: 

E [dxT dx] = E [tr (dxTdx D = E [tr (dxdxT)J = tr (E �xdxT] ) = trQ 

Proof 2 

Analooue to proof 1 weobtain: 

E [ dx T P dx] = E [t r ( dx T P dx)] = E G r ( dx dx T P )] 
= tr (E [dxdxT]P) = trQP 

Proof 3 

From (18) follows (24): 

dx
K 

= (I-G(GTPG)-iGTP)dx
K 

From (24) follows (18): 

dx = dx +Gdt = dx
K

+Gdt = dx
K

+G(dt-dt
K

) 

Proof 4 

dx 

(26) is identic with (25). From (25) follows (27) directly. 

From (27) follows (26): 

Proof 5 

(28) follows from proof 2: 

l- it f": T J E j_G 0 j = E Ldx P dx I r = t r Q P I r 

(29) is an apProximate estimation of K. The rigorous relation 

between K and P should be: 

I 2] -1 K = E !G P 
·- o K 

w i t h E !Yo 2] K b e i n g co m p u t e d a n a 1 o g u e t o a b o v e a s : 

E [\2]
K 

= E [dx� PdxK
] Ir = trQK

Pir 

A rigorous estimation of K using E [o0
2]

K 
i.s impossi.tile because 

K �tself is needed for the det�rmination of E [o0 
2] K. Therefore 

E l o0
2] , being determinable replaces E [o0

2J
K 

in
_

(29). The better 

the choice of P and G the closer is E [a0
2] to E L o0

2 ] K. As soon 

as K, computed from (29) fulfils criterion I we obtain: 

E [o0 
2] = trQPir = trQKPir = E [o0 

2]
K 
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The rigorous validity of 
K = E [a o 2] K p - l 

-1 
can be shown starting from K = cP and proving c 

E [a0 2]K = trQKP/r = tr(KP-G(GTK-1G)-1GTP)/r 

(trKP-tr(GTK-1G)-1GTPG)/r = c(n-u)/r = c 

Proof 6 

From (30) and (31) follows (Q-QK)1 = 0, which is necessary and 
adequate for the validity of (30) using G1 only 

(Q-QK)1 = (I-G1(G�PG1)-1G�P)(M-K)(I -PG1(G�PG1)-1G�) 
T -1 T T T T T T T (I-G1(G1PG1) G1P)(G1U1+U1G1+G1T11G1+G1T12G2+G2T12G1) 

(l-PG1(G�PG1)-1G�) = 0 

For proving that (31) follows from (30) and (Q-QK)1 = 0 
we separate (GTPG)-1into: 

(GTPG)-1 
• I :�

1 >'-J L 12 2 2 

U2 and T22, appearing in (30) we represent explicitely as: 
u2 = (I -G(GTPG)-1GTP)(M-K)P(G1A12+G2A22) 

T T T T T = (I -G1A11G1P-G2A12G1P-G1A12G2P-G2A22G2P)(M-K)(PG1A12+PG2A22) 
T T T ) T22 = (A12G1P+A22G2P)(M-K)(PG1A12+PG2A22 

I n the following proofs we consider: 

From 0 = (Q-QK)1 follows U2 = 0: 
0 = (I -G1A11G�P-G2A�2G�P-G1A12G;P-G2A22G�P) 
(Q-QK)1(PG1A12+PG2A22) 
- (I G A GTP AT T T T ) T -1 T - - 1 11 1 -G2 12G1P-G1A12G2P-G2A22G2P (I -G1(G1PG1) G1P) 
(M-K)(I -PG1(G�PG1)-1G�)(PG1A12+PG2A22) 
= (I -G1A11G�P-G2A�2G�P-G1A12G�P-G2A22G;P)(M-K) 
(PG1A12+PG2A22) = U2 

Ebner 10 



- 121 -

From 0 = (Q-QK}1 follows T22= 0: 

T T T 0 = (A12G1P+A22G2P)(Q-QK)1(PG1A12+PG2A22) 
T T T \ T )-1 T \ = { A12G1P+A22G2P1( I -G1(G1 PG1 G1P 1 

(M-K)(I-PG1(GrPG1�-1GI)(PG1A12+PG2A22) 
T T T = (A12G1P+A22G2P)(M-K)(PG1A12+PG2A22) = T22 

Proof 7 

We put up G1 only and prove that M and M lead to the same 

covariance matrix of residuals: 

- -

From (Q-0)1 = 0 follows that M and M differ due to the 

effect of� t1 only. 
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