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Summary 

An advanced concept of block adjustment by independent models 

is presented, allowing for a simultaneous compensation of certain 

types of systematic errors of model coordinates. To gain practical 

experience with this concept a corresponding computer program was 

written. The test results obtained up to now allow for the following 

conclusions: 

- The practical application of the concept causes no problems. 

- The accuracy of adjusted block coordinates is improved con-

s iderably (in planimetry �p to a factor 3). 

- The obtained accuracy corresponds very well with the accuracy 

as predicted by theory. 

PREFACE 

In modern aerial triangulation systematic errors are of central 

importance again. This was so already, years ago when the poly­

nomial methods were introduced into strip and block triangulation. 

B ut during the following phase which was characterized by simul­

taneous least squares adjustment of all bundles or models of a 

block the interest concentrated on random errors whilst systematic 

errors were neglected most of the time. 

The recent change of thinking was caused by the results of various 

practical block adjustments which indicate clearly that systematic 

errors of considerable size are present in photogrammetric data 

usually [1]. Systematic errors, being not compensated make the 

accuracy of the individual image coordinates or model coordinates 

worse and propagate with the adjustment. 

The propagation of systematic errors depend on the type of 

systematic as well as on control distribution, block size and 

overlap pattern [�, [�, In some cases the propagation of syste­

matic errors is considerably less favourable than the propagation 

of random errors. Consequently the accuracy results can be much 

poorer than expected from theoretical accuracy models for block 

triangulation, being based on random errors only [4]. Uncompensated 

systematic errors can cause the following phenomena: 



- 2 -

- A reduction of control leads to a higher decre ase of accuracy 

than predicted by theory. 

The accuracy decrease with incre asing block size is higher than 

expected from theory. 

- Replacing 20 % sideward overlap by 60 % side lap the accuracy 

is improved only slightly or even not at all. 

- Starting from the same data a block adjustment by independing 

models gives more accurate results than a bundle block adjustment 

( S ee [ 2] , [ 3 J , [ 4 J an d [ 5] , [ 6 J ) 

To avoid the unfavourable and sometimes really dangerous effect 

of systematic errors we have to compensate them. If a certain 

systematic is known definitely it should be compensated a priori 

of course. But normally only a small part of the existing syste­

m atic can be caught in that way. Much more success c an be ex­

pected from a concept which compensates the systematic errors by 

additional parameters of the block adjustment [7]. For that the 

proper term self calibration is used also [8]. From a correct 

application of this concept we may expect a considerable improve­

ment of accuracy and a much better correspondence with theoretical 

accuracy predictions. 

THE CONCEPT FOR COMPENSAT ION OF SYSTEMATIC ERRORS 

A suitable mathematical model 

For the compensation of the expected systematic errors we put up 

additional parameters of proper �ype. In the adjustment we treat 

these parameters as random variables with appropriate weights 

[9], [10]. This approach has two essential advantages 

1. It is fully general and leads to optimal accuracy results. 

Random variables (or observations} are the general case of 

parameters. Free unknowns as well as constants are special 

cases of observations and can be represented by weight zero 

and infinite weight respectively. In aerial triangulation the 

systematic errors normally are rather small. Most of the time 

their effect on image coordinates or model coordinates is in 

the order of the random coordinate accuracy. Therefore it is 

adequate and optimal with respect to accuracy to treat the 

additional parameters as observations with appropriate weights 

and not as free unknowns. 

2. Additional parameters put up as free unknowns can cause serious 

numerical problems. If some of the parameters are highly corre-
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lated with each othe r the normal equations become ill con­

ditioned. These problems are reduced considerably when the 

additional parameters are treated as observations with proper 

weights. In this case we even are allowed to introduce different 

parameters of identic type, Then one parameter can be common to 

all models of the block for instance and other parameters of 

equal type can be put up individually for different strips. 

The adjustment can be formulated in different ways. These formu­

lations are equivalent theoretically but they lead to normal 

equations of different structure and condition D�. If the additio· 

nal parameters generally are common to groups of photos or models 

(to whole strips for instance) the following formulation of the 

block adjustment is suitable. 

vi = Ax + By - f 

v2 = Iy - s 

(la) 

(lb) 

f - vector of observations ,( i n c 1 u d i n g the constant term) 

vi 
- vector of residuals belonging to f 

s = vector of additional observations 

v2 
= vector of residuals belonging to s 

X -· vector of unknowns 

A :: coefficient matrix belonging to X 
y :: vector of additional unknowns 

B :: coefficient matrix belonging to y 

r = unit matrix 

In equation (la) the additional parameters are put up as unknowns. 

Equation (lb) expresses that these unknowns are observed. Usually 

the additional obse rvations s will be zero. But if some of the 

a dditional parameters are known from calibrations the corresponding 

amounts can be introduced into (lb) . 

Equations (la) and (lb) represent the functional model. The 

associated stochastic model is given by the weight coefficient 

matrix G of the common observation vector [f s] T: 
lGff :fJ G = GT £8 88 

Gff = weight coefficient matrix of the observations f 
G = weight coefficient matrix of the additional observations 88 

( 2) 

s 
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The existence of the submatrix Gfs points out that f and s may 

be correlated with each other. In practice however Gfs will be 

zero and Gff as well as G88 usually will be chosen as diagonal 

matrices. The question of a proper choice of the weights of the 

additional observations s is treated in detail in the chapter on 

test results. 

The formulation of the adjustment according to (1) and (2) leads 

to a banded bordered normal equation matrix. Most of the time the 

band width will be greater than the border width, given by the 

total number of additional parameters . Therefore the computing 

time normally will not be very much longer than without such a 

simultaneous compensation of systematic errors. 

The formulation presented here fits into the approach of Gene-

ra 1 i z e d L e as t S q u a res [ 11] . T h i s a p p r o a c h i t s e 1 f i s r e 1 ate d to t h e 

concept of Bayesian Estimation [12]. Furthermore it can be shown 

that the present formulation according to equations (1) and (2) 
fits into the mathematical model of Least Squares Collocation if 

we set s = 0 (additional observations of amount zero) and Gfs = 0 

(no correlations between the observ ations f and s) D�. This 

simplification is realistic because in practical applications 

usually s will be zero and Gfs will be neglected. Considering 

and converting equations (1) properly we obtain: 

:
x

= - r�f+G] = 

f 

Ax = trend 

-v = noise 1 
Bv2 = signal 

Gff = weight coefficient matrix refering to noise 

BG BT 
= weight coefficient rna t r-i x refering to signal ss 

Realization in case of independent model block adjustment 

this 

( 3 ) 

(4) 

As the basic method for block adjustment by independent models we 

choose the planimetry height iteration used in the PAT-M43 program 

D4] . Concerning the additional parameters we suppose that the 

systematic deformations are common to a certain group of models 

at times but change from group to group. In addition some syste­

matic can be common to all models. These assumptions have been 

p roven as very realistic [1]. With the formulation. of equal 

deformations for different models we presume that those models 
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have the same base length and the same direction of the base 

line approximately. Moreover the flying height shall not vary 

too much. However, a further problem appears resulting from the 

fact that the coordinate origin is arbitrary for each model. The 

same formulation .6X = axy, -6.y = 0 for instance leads to different 

model deformations, depending on the origin of x (see figure 1) . 
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This problem doesn't appear in bundle block adjustment where the 

origin of each image is well
' 

defined by the centre point. To solve 

the problem also in case of independent models we search for para­

meters whose effects are not changed by shifts of the coordinate 

system in x and y direction. This condition leads to 4 planimetric 

parameters e, f, p, q and to 6 height parameters r,. s, t, u, v, w 

which contribute to the observational equations for planimetry and 

height as follows: 

Planimetric block adjustment 

�x = ex + fy + p (i'-y2) + q2xy 

.Ay =-ey + fx + p2xy + q (.l-x2) 

Height block adjustment 

..6 z = rx 2 + sy2 + txy 

h X  = -r2xz - tyz + C-) u 

b.y = -s2yz - txz + (-) v 

�z = rx2+sy2 + txy + ( - )w  

for model points 

for model points 

for left hand side 

(right hand side) 

perspective centres 

( 5 ) 

( 6) 

In e quations ( 5) and (6) the additional parameters are treated as 

unknowns. At the same time for each of those parameters a new 

observational equation is put up �ccording to (lb) . 

The parameters e and f allow for a compensation of affine de­

formations of the planimetric model coordinates. The parameters 

p and q are the only one parameters of degree 2 whose effects are 

independent of coordinate shifts in x and y direction. They also 
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appear in conformal polynomial strip adjustment [is]. The in­

fluence of e, f, p and q over the model coordinates x and y is 

plotted in figure 2. 
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The parameters r and s compensate for second degree z deformations 

in x and y direction. The parameter t corrects fol� twisted models. 

Moreover r, s and t have influence over the perspective centre 

coordinates too. The formulation according to equations (6) 

guarantees that the effects of r, s and t are not changed by 

coordinate shifts in x and y direction. A plot of the corresponding 

effects is given in figure 3. 
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Figure 3 

The parameters u, v and w put up also in equations (6) compensate 

for systematic errors of perspective centre coordinates. At the 

same time u, v and w are able to correct for deformations of per­

spective centres being caused eventually by the parameters r, s 

and t. 

The nonlinear spatial block adjustment is started by 2 succeeding 

iteration steps using the computer program PAT-M43 . With that we 

have proper initial values for the following iteration step with 

additional parameters. This step being split again into planimetry 

and height is performed only once normally. ln that way we save 

computing time without loosing accuracy. 
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Before the planimetric block adjustment with additional parameters 

is performed the individual models and the controi points are 

transformed to their centres of gravity in x and y. In accordance 

with the computer program PAT-M43 the perspective centres are not 

used in the planimetric block adjustment. With the following 

rigorous spatial transformation of the individual models the 

additional parameters e, f, p and q have no influence on the 

model heights and on the perspective centre coordinates. 

Before the height block adjustment with additional parameters is 

executed the photogrammetric models are transformed to their centre 

of gravity in x, y and z. Corresponding with the program PAT-M43 

the observational equations belonging to the planimetric model 

coordinates are omitted in the height block adjustment. With the 

following rigorous spatial transformation of the individual models 

the additional parameters r, s and t have no influence on the 

planimetric model coordinates. 

The preliminary computer program 

To gain practical experience with the concept suggested a prelimi­

nary computer program was written by the second author. This pro­

gram allows for a rigorous block adjustment with additional para­

meters according to formulae (1) and (2) and is fully operational. 

The additional parameters as defined by equations (5) and (6) may 

be common to any group of models or/and to all models of the block. 

The weight of each of the additional parameters can be varied 

separately in a range between zero and infinite. The program is 

capable to adjust practical blocks of medium size with a reasonable 

computing time. 

At a later time this program shall be replaced by an extended 

version of the PAT-M package. 

TES T  RES ULTS 

The practical tests were performed to get answers to the following 

questions 

- For which models shall be put up common additional parameters 

and which weights shall be used ? 
- Which accuracy improvement can be attained by an extended block 

adjustment with additional parameters? 

- Is the accuracy obtained in agreement with the corresponding 

theoretical accuracy predictions ? . 
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The test material 

For the practical tests the data of the OEEPE project Oberschwaben 

could be used. From the comprehensive material of this project we 

selected a test block consisting of strips 5 ,  7, 9 and 11 of the 

block Frankfurt (for more details see [16] ) .  Figure 4a shows the 

test block with all available control points. The project data of 

the test block are represented in table 1. 
block size 

camera used 

photo scale 

forward overlap 

s i dew a rd over l a p 

number of strips 

number of models 

number of model points 

number of control points available 

20. 0 km x 62. 5 km 

Zeiss RMK A 15/23 

1: 28. 000 

60 % 
20 % 

4 

100 

1662 

25 8 

All control points and tie points were signalized. 

The image coordinates were measured by a Zeiss PS K stereo 

comparator. The independent models were built computationally. 

Table 1 

Planimetric results 

In planimetry perimeter control was used exclusively and the 

distance between control points �as varied. The different control 

distributions used are represented in figure 4 b. To the questions 

raised at the beginning of the chapter the following answers can 

be given. 

Common additional parameters and proper weights 

Most of the time the models belonging to the same flight strip 

and measured with the same instrument will show very similar de­

formations. Moreover strips flown in the �arne direction often are 

deformed quite similarly [1]. In this context it is important to 

know that the effect of the additional parameters e and f is inde­

pendent of the flight direction whilst the effect of the parameters 

p and q changes in case of a turn of 180°. 

Paying regard to this at the beginning each strip was given its 

own set of additional parameters e, f, p and q. In the adjustment 

to each of those parameters the associated standard deviation G is 

computed too. Considering these 6 values we have learned that the 

parameters p and q are extremely well determined (very small G ) 
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even i f  4 control po i nts are used only. Unfortunately the determi ­

nati on of the aff i n i ty terms e and f is much poorer and depends 

strongly on the control d i str i but i on. When 4 control poi nts are 

used only the standard dev i at i ons are i n  the order of the amounts o 

the parameters. If the aff i n i ty terms e and f are common to all 

models of the block the i r  determi nat i on i s  much better ( consi derabl 

reduced G). Respecti ng these facts we recommend to put up both 

common and i ndi v i dual parameters e and f but w i th di fferent we i ghts 

For the parameters bei ng common to all models relati vely small 

wei ghts should be used to allow for a complete compensati on of the 

common deformati on ( for proper wei ghts see later on) . For the para­

meters e and f be i ng common to one i nd i v i dual str i p  each we suggest 

to use h i ght wei ghts, correspond i ng to an effect over the model 

coordi nates i n  the order of 1 �m for i nstance. These assumpt i ons ar 

adequate i f  the affi ne deformati on i s  more or less constant for 

all models of the block. Very often th i s  w i ll be vali d. But i f  

some of the str i ps have deformati ons e and f d i ffer i ng s i gn i f i cantl. 

from the common onesthey w i ll show up i nsp i te of the hi gh we i ghts 

introduced. In thi s  case of course the adjustment must be repeated 

w i th better (smaller ) wei ghts for the parameters e and f of those 

str i ps. 

Followi ng these suggesti ons we have found that th� i nd i vi dual 

aff i n i ty terms belongi ng to the 4 str i ps of our test block are 

very small. In the further runs of the test we therefore put �P 
common parameter e and f only. The second questi on i n  context w i th 

the add i t i onal parameters concerns the choice of proper we i ghts. 

Here i t  was found that the amounts of the add i ti onal parameters 

be i ng computed i n  the block adjustment are only sl i ghtly dependent 

on the i r  wei ghts. Thi s  i s  true also i n  case of poor control d i str i ­

buti ons. An example i s  g i ven i n  table 2. The results are related to 
a block adjustment w i th 4 control po i nts whi ch i s  the most criti cal 

case. For the model coord i nates we i ght 1 i s  assumed. 

Weight zero used for all add i t i onal parameters 

common parameters parameters of str i ps 1 to 4 

e = -31(13) f = -53(13) p1 = 0(1) q1 = 25(1) 

= 0.377 m 

p2 =-3(1) q2 = 18(1) 

p3 = 8 ( 1) q3 . =-2 5 ( 1) 
p4 =-3(2) q4 =-32(2) 
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Weights roughly adapted to the amounts of the 

additional parameters {appropriate weights) 

common parameters parameters of strips 1 to 4 

e - -30(12) f = -51(12) p1 = 0(1) q1 = 25{1) 

Pxy = 0.37 5 m 

Table 2 

p2 =-3(1) q2 = 18{1) 
p3 = 7 (1) q3 =-25{1) 
p4 =-3(2) q4 =-32(2) 

The unit of the amounts of the additional parameters represented 

in table 2 is 10-6. They are related to model coordinates with the 

dimension km in the terrain. Table 2 confirms that the chosen weight 

have only a small influence on the amounts of the additional 

parameters. As further runs have proven this is true even when 

weights are used which are somewhat higher than the so called 

appropriate weights which correspond to the amounts of the additio­

nal parameters . Moreover table 2 shows that the RMS value rxy of 

the coordinate errors at check points improves slightly when ade­

q uate weights are used. Paying regard to these results it can be 

recommended to choose the weights of the additional parameters 

according to their expected amounts or somewhat smaller. With that 

the accuracy is optimized and problems with respect to the con­

dition of the normal equation matrix are avoided. 

Regarding the amounts of the additional parameters being represente 

in table 2 the following can be said, The affinity terms e = -30 
and f = -51 correspond to maximum model deformations of 2. 7 pm and 

4.6 pm respectively (related to the photo scale) . The terms p are 

rather small, even p3 = 8 corresponds to 1.8 pm only (at the 

maximum) . In contrast to p the parameters q are rather large. The 

change of sign from q1, q2 to q3, q4 is in agreement with the 

change of flight direction. The largest amount q4 = -32 corresponds 

to a maximum model deformation of 7. 1 pm. A positive .sign of the 

additional parameters corresponds to the deformations represented 

in figure 2. The results from table 2 are in agreement with the 

model deformations obtained in [1]. 

Accuracy improvement by additional parameters 

Using the control distributions represented in figure 4 b the 

test block was adjusted without and with additional parameters. 

The affinity terms were put up common to all models but individual 

parame�ers p and q were used for each strip. The corresponding 

results are represented in table 3. The accuracies are related to 
the photo scale. 



control control check without add. param. 

version points points 
G 

0 
!Jm] Jlxy [�m] 

i=2 32 226 6. 8 9 .9 

i=4 16 242 6 . 5 13.4 

1=8 8 2 50 6. 2 20,0 

(i=11) 6 2 52 6.1 22.1 

(i=16) 4 2 54 5. 9 32.4 

Table 3 

with add. param. 

G
0 

[�mJ �xy [pm] 
4.3 6. 3 

4.2 6. 6 

4�2 7. 4 

4.2 7. 3 

4.2 13. 5 

accut�acy ratios 

60 Pxy 

1.6 1.6 

1. 5 2.0 

1. 5 2.7 

1. 5 3.0 

1.4 2.4 

' 
1-' 
N 
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Let us start the discussion with 60 representing the random 

accuracy of model coordinates. Without additional parameters 60 
depends significantly on the control distribution used. This is 

in disagreement with theory� When additional parameters are intro­

duced into the block adjustment 60 becomes considerably smaller 

(at a factor 1.4 to 1. 6) and the dependency on control distribution 

disappears. With 4.2 �m sigma nought is very close to the noise 

limit we can expect from photogrammetry today. Even more important 

is the comparison of the absolute accuracies expressed by �xy' 

the RMS value of the coordinate errors at check points. We see 

that the additional parameters improve the accuracy the more the 

poorer the control distribution is. The improvement increases up 

to a factor 3.0 in case of 6 control points used. In figure 5 the 

corresponding results are represented graphically. 
ll Xy [ll m] 

30 

25 

20 

15 

10 

5 

2 4 8 
Figure 5 

11 

without 

addit i onal 

parameters 

with 

l� . t tperimeter 

The test shows that absolute accuracies of about 7 pm at the 

photo scale can be realized today, even when the control spacing 

along the block perimeter is in the order of 4 to 8 base length. 

If we put this accuracy of 7 �m � 20 em in relation to the length 

of the block (62.5 km) we obtain a relative accuracy which is 

better than 1:300.000. 

Comparison with theo11 

Now a comparison is made between the accuracy obtained by block 

adjustment with additional parameters and the corresponding 

theoretical accuracy being based on random errors only [4]. 

However, to allow for a correct comparison we have to consider 

that the check points used in the test are not errorfree as 

assumed by theory. Therefore the theoretical accuracy figures 
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obtained from [4] are superposed by the random accuracy of 

check points which we assume with 10 em in the terrain. This 

assumption can be considered as realistic. The result of the 

comparison is given graphically in figure 6 .  

test 
3.0 

2. 5 theory 

2.0 

1.5 

1.0 

> 
2 4 8 1 6 i (perimeter) 

Figure 6 
Figure 6 shows that the accuracy obtained in the test is close 

to the accuracy as predicted by theory. The discrepancies are 

less than 20 % and can be explained by the facts that one test 

is just one sample and that the test doesn't meet the premises 

of the theory rigorously {different block shape for instance) . 

Considering this we can say that the accuracy results of the 

test are in agreement with the corresponding theoretical predictions 

This agreement is most important because it indicates that the 

existing systematic errors are compensated very well by the 

additional parameters used and that the remaining errors can be 

considered as random. 

Comment on height 

The corresponding investigation on height block adjustment with 

additional parameters is still at work. The test will be based on 

the control distributions represented in figure 4 c. 
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