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Summary

An advanced concept of block adjustment by independent models

is presented, allowing for a simultaneous compensation of certain

types of systematic errors of model coordinates. To gain practical

experience with this concept a corresponding computer program was

written. The test results obtained up to now allow for the following

conclusions:

- The practical application of the concept causes no problems.

- The accuracy of adjusted block coordinates is improved con-
siderably (in planimetry up to a factor 3).

- The obtained accuracy corresponds very well with the accuracy

as predicted by theory.

PREFACE

In modern aerial triangulation systematic errors are of central
importance again. This was so already, years ago when the poly-
nomial methods were introduced into strip and block triangulation.
But during the following phase which was characterized by simul-
taneous least squares adjustment of all bundles or models of a
block the interest concentrated on random errors whilst systematic
errors were neglected most of the time.

The recent change of thinking was caused by the results of various
practical block adjustments which indicate clearly that systematic
errors of considerable size are present in photogrammetric data
usually [1]. Systematic errors, being not compensated make the
accuracy of the individual image coordinates or model coordinates
worse and propagate with the adjustment.

The propagation of systematic errors depend on the type of
systematic as well as on control distribution, block size and
overlap pattern [2], [3]. In some cases the propagation of syste-
matic errors is considerably less favourable than the propagation
of random errors. Consequently the accuracy results can be much
poorer than expected from theoretical accuracy models for block
triangulation, being based on random errors only [{1. Uncompensated
systematic errors can cause the following phenomena:



S5 IS

A reduction of control leads to a higher decrease of accuracy
than predicted by theory.
- The accuracy decrease with increasing block size is higher than
expected from theory.
- Replacing 20 % sideward overlap by 60 % side lap the accuracy
is improved only slightly or even not at all.
- Starting from the same data a block adjustment by independing
models gives more accurate results than a bundle block adjustment

(see [2], [3]. [4] and [5], [6])

To avoid the unfavourable and sometimes really dangerous effect
of systematic errors we have to compensate them. If a certain
systematic is known definitely it should be compensated a priori
of course. But normally only a small part of the existing syste-
matic can be caught 1in that way. Much more success can be ex-
pected from a concept which compensates the systematic errors by
additional parameters of the block adjustment [7]. For that the

" proper term self calibration is used also [8]. From a correct
application of this concept we may expect a considerable improve-
ment of accuracy and a much better correspondence with theoretical
accuracy predictions.

THE CONCEPT FOR COMPENSATION OF SYSTEMATIC ERRORS
A suitable mathematical model

For the compensation of the expected systematic errors we put up
additional parameters of proper type. In the adjustment we treat
these parameters as random variables with appropriate weights
Eﬂ ) [1@]. This approach has two essential advantages

1, It is fully general and leads to optimal accuracy results.
Random variables (or observations) are the general case of
parameters. Free unknowns as well as constants are special
cases of observations and can be represented by weight zero
and infinite weight respectively. In aerial triangulation the
systematic errors normally are rather small. Most of the time
their effect on image coordinates or model coordinates is in
the order of the random coordinate accuracy. Therefore it is
adequate and optimal with respect to accuracy to treat the
additional parameters as observations with appropriate weights
and not as free unknowns.

2. Additional parameters put up as free unknowns can cause serious
numerical problems. If some of the parameters are highly corre-



lated with each other the normal equations become i1l con-
ditioned. These problems are reduced considerably when the
additional parameters are treated as observations with proper
weights. In this case we even are allowed to introduce different
parameters of identic type. Then one parameter can be common to
all models of the block for instance and other parameters of
equal type can be put up individually for different strips.

The adjustment can be formulated in different ways. These formu-
lations are equivalent theoretically but they lead to normal
equations of different structure and condition Diﬂ . If the additio-
nal parameters generally are common to groups of photos or models
(to whole strips for instance) the following formulation of the
block adjustment is suitable.

% Ax + By - f (1la)

v, = Iy - s (1b)

= vector of observations (including the constant term)

= vector of residuals belonging to f

[

= vector of additional observations
= vector of residuals belonging to s

N

= vector of unknowns
= coefficient matrix belonging to x
= vector of additional unknowns

< X < 0 < =4
1]

= coefficient matrix belonging to y .

lan]
]

unit matrix

In equation (la) the additional parameters are put up as unknowns.
Equation (1b) expresses that these unknowns are observed. Usually
the additional observations s will be zero. But if some of the
additional parameters are known from calibrations the corresponding
amounts can be introduced into (1b).

Equations (la) and (1b) represent the functional model. The
associated stochastic model is given by the weight coefficient
matrix G of the common observation vector [f {]T:

fo Gfs
6= |or (2)
_ s ss

fo weight coefficient matrix of the observations f

SS

weight coefficient matrix of the additional observations s



The existence of the submatrix Gg, points out that f and s may
be correlated with each other. In practice however G, will be
zero and Ggge as well as G, usually will be chosen as diagonal
matrices. The question of a proper choice of the weights of the
additional observations s is treated in detail in the chapter on
test results.

The formulation of the adjustment according to (1) and (2) leads
to a banded bordered normal equation matrix. Most of the time the
band width will be greater than the border width, given by the
total number of additional parameters. Therefore the computing
time normally will not be very much longer than without such a
simultaneous compensation of systematic errors.

The formulation presented here fits into the approach of Gene-
ralized Least Squares [11]. This approach itself is related to the
concept of Bayesian Estimation [127. Furthermore it can be shown
that the present formulation according to equations (1) and (2)
fits into the mathematical model of Least Squares Collocation if
we set s = 0 (additional observations of amount zero) and GfS =0
(no correlations between the observations f and s) [13]. This
simplification is realistic because in practical applications
usually s will be zero and GfS will be neglected. Considering this
and converting equations (1) properly we obtain:

Ax - vq4 + Bv, = f . (3)
G
£E
- o] .
SS
Ax = trend
v, = noise
Bv2 = signal
fo = weight coefficient matrix refering to noise
BGSSBT = weight coefficient matrix refering to signal

Realization in case of independent model block adjustment

As the basic method for block adjustment by independent models we
choose the planimetry height iteration used in the PAT-M43 program
BA]. Concerning the additional parameters we suppose that the
systematic deformations are common to a certain group of models

at times but change from group to group. In addition some syste-
matic can be common to all models. These assumptions have been
proven as very realistic [{]. With the formulation. of equal
deformations for different models we presume that those models




have the same base length and the same direction of the base

line approximately. Moreover the flying height shall not vary

too much. However, a further problem appears resulting from the

fact that the coordinate origin is arbitrary for each model. The
same formulation AXx = axy, Ay = 0 for instance leads to different
model deformations, depending on the origin of x (see figure 1).
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This problem doesn't appear in bundle block adjustment where the
origin of each image is well defined by the centre point. To solve
the problem also in case of independent models we search for para-
meters whose effects are not changed by shifts of the coordinate
system in x and y direction. This condition leads to 4 planimetric
parameters e, f, p, q and to 6 height parameters r, s, t, u, v, w
which contribute to the observational equations for planimetry and
height as follows:

Planimetric block adjustment
AX = ex + fy + p(flyg) + g2xy

5 for model points (5)
Ay =-ey + fx + p2xy + q(y-x°)
Height block adjustment
Az = rx? + sy2 + txy for model points
AX = -r2xz - tyz + (-)u for left hand side
Ay = -s2yz - txz + (-)v (right hand side)
AV rx2+sy2 + txy + (-)w perspective centres (6)

In equations (5) and (6) the additional parameters are treated as
unknowns. At the same time for each of those parameters a new
observational equation is put up according to (1b).

The parameters e and f allow for a compensation of affine de-
formations of the planimetric model coordinates. The parameters

p and q are the only one parameters of degree 2 whose effects are
independent of coordinate shifts in x and y direction. They also



appear in conformal polynomial strip adjustment [15]. The in-
fluence of e, f, p and q over the model coordinates x and y is
plotted in figure 2.
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The parameters r and s compensate for second degree z deformations
in x and y direction. The parameter t corrects fer twisted models.
Moreover r, s and t have influence over the perspective centre

- coordinates too. The formulation according to equations (6)
guarantees that the effects of r, s and t are not changed by
coordinate shifts in x and y direction. A plot of the corresponding
effects is given in figure 3.
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The parameters u, v and w put up also in equations (6) compensate
for systematic errors of perspective centre coordinates. At the
same time u, v and w are able to correct for deformations of per-
spective centres being caused eventually by the parameters r, s
and t.

The nonlinear spatial block adjustment is started by 2 succeeding
iteration steps using the computer program PAT-M43. With that we
have proper initial values for the following iteration step with
additional parameters. This step being split again into planimetry
and height is performed only once normally., In that way we save
computing time without loosing accuracy.



Before the planimetric block adjustment with additional parameters
is performed the individual models and the control points are
transformed to their centres of gravity in x and y. In accordance
with the computer program PAT-M43 the perspective centres are not
used in the planimetric block adjustment. With the following
rigorous spatial transformation of the individual models the
additional parameters e, f, p and q have no influence on the

model heights and on the perspective centre coordinates.

Before the height block adjustment with additional parameters is
executed the photogrammetric models are transformed to their centre
of gravity in x, y and z. Corresponding with the program PAT-M43
the observational equations belonging to the planimetric model
coordinates are omitted in the height block adjustment. With the
following rigorous spatial transformation of the individual models
the additional parameters r, s and t have no influence on the

- planimetric model coordinates.

The preliminary computer program

To gain practical experience with the concept suggested a prelimi-
nary computer program was written by the second author. This pro-
gram allows for a rigorous block adjustment with additional para-
meters according to formulae (1) and (2) and is fully operational.
The additional parameters as defined by equations (5) and (6) may
be common to any group of models or/and te all models of the block.
The weight of each of the additional parameters can be varied
separately in a range between zero and infinite, The program is
capable to adjust practical blocks of medium size with a reasonable
computing time.

At a later time this program shall be replaced by an extended
version of the PAT-M package.

TEST RESULTS

The practical tests were performed to get answers to the following

questions

- For which models shall be put up common additional parameters
and which weights shall be used ?

- Which accuracy improvement can be attained by an extended block
adjustment with additional parameters?

- Is the accuracy obtained in agreement with the corresponding
theoretical accuracy predictions 7



The test material

For the practical tests the data of the OEEPE project Oberschwaben
could be used. From the comprehensive material of this project we
selected a test block consisting of strips 5, 7, 9 and 11 of the
block Frankfurt (for more details see [}6]). Figure 4a shows the
test block with all available controi points. The project data of
the test block are represented in table 1.

block size 20.0 km x 62.5 km
camera used Zeiss RMK A 15/23
photo scale 1:28.000
forward overlap 60 %
sidewardoverlap 20 %
number of strips 4
number of models 100
number of model points 1662
" number of control points available 258

A11 control points and tie points were signalized.

The image ccordinates were measured by a Zeiss PSK stereo

comparator. The independent models were built computationally.
Table 1

Planimetric results

In planimetry perimeter control was used exclusively and the
distance between control points was varied. The different control
distributions used are represented in figure 4 b. To the questions
raised at the beginning of the chapter the following answers can
be given.

Common additional parameters and proper weights

Most of the time the models belonging to the same flight strip

and measured with the same instrument will show very similar de-
formations. Moreover strips flown in the same direction often are
deformed quite similarly [1]. In this context it is important to
know that the effect of the additional parameters e and f is inde-
pendent of the flight direction whilst the effect of the parameters
p and g changes in case of a turn of 180°,

Paying regard to this at the beginning each strip was given its
own set of additional parameters e, f, p and q. In the adjustment
to each of those parameters the associated standard deviationG is
computed too. Considering these G values we have iearned that the

parameters p and q are extremely well determined (very small G )
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even if 4 control points are used only, Unfortunately the determi-
nation of the affinity terms e and f is much poorer and depends
strongly on the control distribution., When 4 control points are
used only the standard deviations are in the order of the amounts o
the parameters. If the affinity terms e and f are common to all
models of the block their determination is much better (considerab]l
reduced G ). Respecting these facts we recommend to put up both
common and individual parameters e and f but with different weights
For the parameters being common to all models relatively small
weights should be used to allow for a complete compensation of the
common deformation (for proper weights see later on). For the para-
meters e and f being common to one individual strip each we suggest
to use hight weights, corresponding to an effect over the model
coordinates in the order of 1 pm for instance. These assumptions ar
adequate if the affine deformation is more or less constant for

all models of the block. Very often this will be valid. But if

some of the strips have deformations e and f differing significanti,
from the common onesthey will show up inspite of the high weights
introduced. In this case of course the adjustment must be repeated
with better (smaller) weights for the parameters e and f of those
strips.

Following these suggestions we have found that the individual
affinity terms belonging to the 4 strips of our test block are

very small. In the further runs of the test we therefore put up
common parameter e and f only, The second question in context with
the additional parameters concerns the choice of proper weights.
Here it was found that the amounts of the additional parameters
being computed in the block adjustment are only slightly dependent
on their weights. This is true also in case of poor control distri-
butions. An example is given in table 2. The results are related to
a block adjustment with 4 control points which is the most critical
case. For the model coordinates weight 1 is assumed.

Weight zero used for all additional parameters

common parameters parameters of strips 1 to 4
e = =31(13) f = -58(1L3) p, = 0(1) g 25(1)

p, =-3(1) q, = 18(1)
ny = 0.377 m By # 8(1) - q3.=-25(l)

P, =-3(2) q, =-32(2)
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Weights roughly adapted to the amounts of the
additional parameters (appropriate weights)

common parameters parameters of strips 1 to 4
e = -30(12) f = -51(12) p, = 0(1) q, = 25(1)
p, =-3(1) a, = 18(1)
ny = 0.375 m Py = 7(1) dg ==25(1)
p, =-3(2) q, =-32(2)
Table 2

The unit of the amounts of the additional parameters represented

in table 2 is 107°. They are related to model coordinates with the
dimension km in the terrain. Table 2 confirms that the chosen weight
have only a small influence on the amounts of the additional
parameters. As further runs have proven this is true even when
weights are used which are somewhat higher than the so called
appropriate weights which correspond to the amounts of the additio-
nal parameters. Moreover table 2 shows that the RMS value Mxy of
the coordinate errors at check points improves slightly when ade-
quate weights are used. Paying regard to these results it can be
recommended to choose the weights of the additional parameters
according to their expected amounts or somewhat smaller. With that
the accuracy is optimized and problems with respect to the con-
dition of the normal equation matrix are avoided.

Regarding the amounts of the additional parameters being represente
in table 2 the following can be said., The affinity terms e = -30
and f = -51 correspond to maximum model deformations of 2.7 pm and
4.6 pm respectively (related to the photo scale). The terms p are
rather small, even Py = 8 corresponds to 1.8 pm only (at the
maximum). In contrast to p the parameters q are rather large. The
change of sign from 95 9, to 45 Qy is in agreement with the
change of flight direction. The largest amount q, = -32 corresponds
to a maximum model deformation of 7.1 pm. A positive .sign of the
additional parameters corresponds to the deformations represented
in figure 2. The results from table 2 are in agreement with the
model deformations obtained in [1}.

Accuracy improvement by additional parameters

Using the control distributions represented in figure 4 b the

test block was adjusted without and with additional parameters.
The affinity terms were put up common to all models but individual
parameters p and q were used for each strip. The corresponding

results are represented in table 3. The accuracies are related to
the photo scale.



control control check without add. param.| with add. param. accuracy ratios
version points points .
So (1] |Pxy [F0) | G [F0] [puy () | 6 Fay
i=2 3B 226 6.8 9.9 4.3 6.3 1.6 1.6
i=4 16 242 6.5 13.4 4.2 6.6 1.5 2.0
i1=8 8 250 6.2 20.0 4,2 7.4 1.5 2.7
(i=11) 6 252 6.1 22.1 4.2 7.3 1.5 8.0
(i=16) 4 254 5.9 32.4 4.2 13.5 1.4 2.4

Table 3

_2‘[-
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Let us start the discussion with G representing the random
accuracy of model coordinates. Without additional parameters 60
depends significantly on the control distribution used. This 1is

in disagreement with theory. When additional parameters are intro-
duced into the block adjustment 60 becomes considerably smaller
(at a factor 1.4 to 1.6) and the dependency on control distribution
disappears. With 4.2 pm sigma nought is very close to the noise
1imit we can expect from photogrammetry today. Even more important
is the comparison of the absolute accuracies expressed by ny,

the RMS value of the coordinate errors at check points. We see

that the additional parameters improve the accuracy the more the
poorer the control distribution is. The improvement increases up

to a factor 3.0 in case of 6 control points used. In figure 5 the

corresponding results are represented graphically.
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Figuke 5
The test shows that absolute accuracies of about 7 pm at the
photo scale can be realized today, even when the control spacing
along the block perimeter is in the order of 4 to 8 base length.
If we put this accuracy of 7 pm 2 20 cm in relation to the length
of the block (62.5 km) we obtain a relative accuracy which is

better than 1:300.000.

Comparison with theory

Now a comparison is made between the accuracy obtained by block
adjustment with additional parameters and the corresponding
theoretical accuracy being based on random errors only [{].
However, to allow for a correct comparison we have to consider
that the check points used in the test are not errorfree as

assumed by theory. Therefore the theoretical accuracy figures
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obtained from [4] are superposed by the random accuracy of
check points which we assume with 10 cm in the terrain. This
assumption can be considered as realistic. The result of the
comparison is given graphically in figure 6.
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Figure 6
Figure 6 shows that the accuracy obtained in the test is close
to the accuracy as predicted by theory. The discrepancies are
less than 20 % and can be explained by the facts that one test
is just one sample and that the test doesn't meet the premises
of the theory rigorously (different block shape for instance).

Considering this we can say that the accuracy results of the

test are in agreement with the corresponding theoretical predictions
This agreement is most important because it indicates that the
existing systematic errors are compensated very well by the
additional parameters used and that the remaining errors can be
considered as random.

Comment on height

The corresponding investigation on height block adjustment with
additional parameters is still at work. The test will be based on
the control distributions represented in figure 4 c.
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