

Stuttgart, June 29, 2007

Project Digital Camera Calibration and Validation

Official notes from the project pilot centre

Comment 1

The project was focussed on the empirical testing of geometric accuracy of commercial large format digital cameras. **The project did not emphasize in the comparison of accuracy from different camera systems**, but in the definition and testing of sensor related self-calibration parameter sets, which then could be recommended for each different sensor type individually.

Comment 2

The distribution of the three empirical test flight data, i.e.

- ▶ Intergraph/ZI DMC test Fredrikstad, Oct 10, 2003,
- ► Leica Geosystems ADS40 test Vaihingen/Enz, Jun 26, 2004,
- Microsoft Imaging UltracamD test Fredrikstad, Sep 16, 2004

was officially reconfirmed by all three manufacturers.

Comment 3

All empirical results rely on those three flights only – **only one sample of flight data for each camera** has been used. The obtained accuracy has to be validated from results of additional similar flights. Such data have not been available for this EuroSDR project.

Comment 4

The empirical flight data was acquired in 2003 and 2004 already and thus **might not fully reflect the today's performance** of the tested three sensor systems due to continuous refinements in sensor development.

Comment 5

All three sensors were flown in two different flying heights resulting in **different ground sampling distances** (GSD) with **individual block geometries**. Flights were done in **two different test ranges**.

EuroSDR (formerly OEEPE) - Network "Digital Camera Calibration" Michael Cramer, Institut für Photogrammetrie (ifp),Universität Stuttgart, Geschwister-Scholl-Str. 24D, D-70174 Stuttgart/Germany, Tel: +49-711-68583386; Fax: +49-711-68583297; E-mail: michael.cramer@ifp.uni-stuttgart.de

Comment 6

Even though the frame sensor systems were both flown in the Fredrikstad test site with similar ground sampling distances

- ► DMC high flight,
 - flying height 1800m above ground
 - corresponding GSD 0.18m
- ► UCD low flight
 - flying height 1900m above ground
 - corresponding **GSD 0.17m**

their **results cannot be compared directly**. The UltracamD flight consists of 4 lines with 80% overlap, 60% sidelap including one cross strip (altogether 131 images). In contrary to this the DMC flight covers the same area but with standard 60% / 30% overlaps only, resulting in 3 flight lines with no cross strips (altogether 34 images). The **UltracamD block is of considerably stronger geometry than the DMC block**, which positively influences the accuracy of object point determination.

Comment 7

The most important results from this EuroSDR test are summarized like follows

- Self-calibration is necessary to improve quality of object point determination for all three tested camera systems.
- Self-calibration is of larger influence for DMC and UltracamD compared to ADS40.
- Systematic corrections for UltracamD are more significant compared to DMC.
- Besides self-calibration model the a priori weighting is of larger influence. In some case the choice of weighting factors even exceeds the influence of the applied self-calibration model.
- In some cases specially designed self-calibration parameter sets adopted to sensor geometry are necessary. The standard photogrammetric Ebner or Gruen parameters are not able to fully compensate for the systematic errors in all cases.

Comment 8

The detailed results of this extensive test will be part of the final report. This report is compiled in fall this year and publicly available through the project web site http://www.ifp.uni-stuttgart.de/eurosdr/index.html.

For this year's Photogrammetric Week a first paper including the most important findings will be published.

Stuttgart, June 29, 2007

4. Games

EuroSDR project leader

EuroSDR (formerly OEEPE) - Network "Digital Camera Calibration" Michael Cramer, Institut für Photogrammetrie (ifp),Universität Stuttgart, Geschwister-Scholl-Str. 24D, D-70174 Stuttgart/Germany, Tel: +49-711-68583386; Fax: +49-711-68583297; E-mail: michael.cramer@ifp.uni-stuttgart.de

Universität Stuttgart

Institut für Photogrammetrie

Results from the EuroSDR network on Digital Camera Calibration and Validation

Michael Cramer

michael.cramer@ifp.uni-stuttgart.de

ISPRS Workshop High Resolution Earth Imaging May 29 – June 1, 2007 Leibniz Universität Hannover

Objectives

theoretical PHASE 1 (finished end of 2004)

Collection of publicly available material to compile an extensive report documenting currently used calibration practice and methods

- All network participants, i.e. camera producers and other experts contribute with their experiences
- Common knowledge base for the formulation on future strategies
- Helpful for system users to gain their knowledge in digital camera calibration

www.ifp.uni-stuttgart.de/EuroSDR/EuroSDR-Phase1-Report.pdf

Report is open to system suppliers, users and customers

Universität Stuttgart

The EuroSDR Calibration network

Objectives

empirical PHASE 2 (finished end of 2006)

Recommendation/development of commonly accepted procedure(s) for camera systems calibration and experimental testing

- Focus on some of the technical aspects in a sequential order, i.e. starting with geometrical aspects and verification
- Empirical testing should *not* lead to direct comparisons of cameras, but to individual calibration recommendations for each digital camera design

Empirical phase 2 extended to Phase 2b (recently finished May 2007)

ifp

EuroSDR Network on Digital Camera Calibration and Validation

~11/

	#	Group	Institutions / Systems	#
	1	Camera manufacturers	ADS, DIMAC, DMC, DSS, UltracamD, Starimager, 3-DAS-1, DigiCAM	12
	2	AT software developers	BLUH, ORIMA, inpho, dgap, CSIRO	5
	3	Other companies	Vito, ISTAR, Geosys, OMC, stereocarto	5
	4	Science	ETH, OSU, Glasgow, Stuttgart (2x), IdeG, Rostock, DLR (2x), Berlin, Nottingham, Aas, Pavia, Leon	29
	5	NMCAs	ICC, USGS, OrdSurv, IGN, FGI, Lantmäteriet, Swisstopo, BEV, ICV, itacyl	13
2		Į.	\sum representatives	64

The EuroSDR Calibration network Universität Stuttgart

Phase 2 / 2 b Active Participants

#	Code	Institutions
1	ICC	Institute Cartographic Catalunya, Spain
2	LM	Lantmatäriet, Gävle, Sweden
3	itacyl	ITACYL, Valladolid, Spain
4	inpho	inpho, Stuttgart, Germany
5	CSIRO	CSIRO Information Sciences, Wembley, Australia
6	DLR-B	DLR, Berlin, Germany
7	HfT	University of Applied Science, Stuttgart, Germany
8	IPI	IPI, University of Hannover, Germany
9	ETH	ETH Zürich, Switzerland
10	UoP	University of Pavia, Italy
11	UoN	University of Nottingham, England
12	Ingr.ZI	Intergraph ZI, Aalen, Germany
13	Vexcel	Vexcel, Graz, Austria

The EuroSDR Calibration network

ifp

Results from the EuroSDR network on

Institut für Photogrammetrie

Digital Camera Calibration

The empirical test flight data

Experimental Phase 2 data

#	Altitude [m]	GSD [m]	# strips long/cross	% overlap long/cross	# Images	Additional data		
ADS Vaihingen/Enz, June 26, 2004								
low	1500	0.18	4 / 2	100 / 44	36	GPS/INS		
high	2500	0.26	3/3	100 / 70	36	GPS/INS		
DMC	Fredriksta	d, October	10, 2003		F	hase 2b		
low	950	0.10	5	60 / 30	115	n.a.		
high	1800	0.18	3	60 / 30	34	n.a.		
Ultrac	UltracamD Fredrikstad, September 16, 2004							
low	1900	0.17	4 / 1	80 / 60	131	GPS		
high	3800	0.34	2	80 / 60	28	GPS		

The empirical test flight data

ifp

ADS40 image block geometry

The empirical test flight data

ifp

		ATTOX 545		-	a. 100 - 010	21.2						1		- 228		-	#0.0000 #					
	· · · •				4	;	. ⊲		: .∾			6003	.⊲	4	•	•••••		4	-			
extreme	• • • • •	⊲		3006 * • • •	4	₽₽			4	-			4	4	4	*	- A 	4	; ; ;			
-0-6PS-INS-	roos • • •			8005		4		••••	~		• • • •	8008				80'IU .	. <		·. :	8012		
high_Level_3	5004 · · ·		4	2009 2009	\ \ \ \ \ \	< .		soos		4			∆ . ∆	·	: : :		4	4	: 1	7012	⊲	4
DMC		A . A		7002	م م	A • •	4	2005		~ √ • 4			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4			•. •4	< <	ł	5012 • • •	44	•
	6003 • •	4 4	4	7001 A .	4	. v	1	8004	Ā	4	· . ·	8001 • • • •	** **1 .*	. 4	•••	• • • • •	4		1,11	4	⊳	5

Image coordinates by Pilot Centre

Phase 2b, DMC and UCD flights

Example: DMC high block - measured points / image

ifp

Universität Stuttgart

Institut für Photogrammetrie

Results from the EuroSDR network on

Digital Camera Calibration

Phase 2 / 2b Evaluated data sets

Phase 2 Data Set	# Results	Participants
ADS	3	UoP, DLR-B, ETH
DMC	6	ICC, IPI, inpho, HfT, LM, Ingr.ZI
UltracamD	5	UoN, IPI, itacyl, inpho, CSIRO

77 different versions (Phase 2) evaluated

Phase 2b Data Set	# Results	Participants
DMC	5	ICC, IPI, CSIRO, ETH, Ingr.ZI
UltracamD	4	IPI, CSIRO, ETH, Vexcel
		80 different versions (Phase 2b) evaluated

The test flight results

ifp

General remarks on data processing (1/2)

- typically the two different flight heights processed independently, only few participants used both heights for common adjustment
- standard and proprietary software packages used

Process step	Software
Matching and point measurement (only for Phase 2)	Manual, MATCH-AT, LPS, ISAT, Gpro, PhotoMod, others
Bundle adjustment	Match-AT, ORIMA, InBlock, BLUH, PhotoMod, ACX-Geotex, IS-PhotoT, others

General remarks on data processing (2/2)

- Self-calibration was applied in general,
- but additionally almost each participant also provided solution w/o use of additional SC
- some participants used modified SC approaches taking the specific image geometry of large format DMC / UCD imagery into account

Data set	Self-calibration parameter set (if applied)
DMC	Ebner, Grün, Polynom, BLUH parameters Ebner / Grün per quadrant, BLUH DMC specific
UCD	Brown, Grün, BLUH parameters Ebner / Grün per image patch, BLUH UCD specific
ADS	Brown (with some extensions)

Institut für Photogrammetrie

Results from the EuroSDR network on

Digital Camera Calibration

The ADS results

The test flight results

Phase 2 – ADS ifp solution

Elight		GSD [m]	GSD [m] RMS <i>non-stag.</i> X [m] Y [m] Z [m]				
Fiight		non-stag.					
ADS	1500	0.10	0.052	0.054	0.077		
low	no SC	0.10	0.052	0.034	0.077		
ADS	1500	0.19	0.021	0.040	0.057		
low	with SC	0.10	0.031	0.040	0.057		
ADS	2500	0.26	0.066	0.060	0 100		
high	no SC	0.20	0.000	0.000	0.100		
ADS	2500	0.26	0.064	0.050	0.097		
high	with SC	0.20	0.004	0.059	0.007		

- RMS values from 190 check point differences
- Results obtained from standard Leica processing software
 - ORIMA bundle adjustment, 12 GCPs used
 - self calibration (if applied) based on Brown parameters

The test flight results

Remarks to the reader

ETH versions

ifp

Test1	DGR (direct georeferencing) trajectory model, no self-calibration applied, only 4 GCP
Test2	DGR trajectory model, 18 params in SC, only 4 GCP
	6 for camera lens : 1 focal length, 3 radial & 2 tangential distortions
	for each of the three lines: 2 principal point, 1 scan line inclination, 1 affinity across flight direction
Test3	DGR trajectory model, 12 params in SC, only 4 GCP
	like above, but without x0 forward + nadir, y0 nadir, sy nadir, phi nadir
Test4	LIM (lagrange interpolation model) trajectory model, no SC, only 4 GCP
Test5	LIM trajectory model, 18 params in SC, only 4 GCP
Test11	DGR trajectory model, 18 params in SC, 12 GCP

UoP version (only A lines used)

basic	no additional parameters estimated (no self-calibration, no IMU misalignment, drift, datum)
para	no SC, but additional parameters like IMU misalignment, datum transform, drift
self	additional SC besides the para additional parameters above

all UoP versions calculated with all 12 GCP and a reduced number of 6 GCP only

Institut für Photogrammetrie

Universität Stuttgart

Results from the EuroSDR network on

Digital Camera Calibration

The DMC & UCD results (Phase 2b only)

Remarks to the reader

ifp versions

ifp

No SC	like participants, only based on 21 GCPs
P44	Gruen parameters from 21 GCPs, like participants
P44 sign	like P44 variant but only significant parameters used
P44 all cp	Gruen parameters estimated from all ground points (GCP + ChP), only significant terms corrected, this control point data data was not accessible to participants

The different numbers at the bottom of each table have to be interpreted like follows:

Phase 2b – DMC & UCD ifp "reference" solutions

Flight	H [m]	GSD [m]	RMS		
			X [m]	Y [m]	Z [m]
DMC	950	0.10	0.040	0.048	0.132
DMC	1800	0.18	0.048	0.047	0.116
UCD	1900	0.17	0.076	0.060	0.059
UCD	3800	0.34	0.048	0.068	0.103

- RMS values from check point differences
- in all cases 44 significant Gruen parameters introduced, from all available ground points (GCPs and ChPs)
- Input std.dev. used for weighting:
 - image points 3um
 - GCPs 2cm

The test flight results

Remarks to the reader

ETH versions

ifp

nono SC, notice different weighting of a priori observationsEbner V0/V412 Ebner parameters estimated for 4 image patches / quadrantsGruen V044 Gruen parameters estimated for 4 image patches / quadrants

CSIRO version

no no SC, no values given for a priori weights

IPI versions

- no no SC parameters used
- par1-12 12 standard BLUH parameters
- par1-12, 78-80 12 standard BLUH params plus two additional params (view angle (78) and rad. distortion (80) for all heads together)
- par1-12, 30-41, 74-77 12 standard BLUH params plus additional params describing individual DMC sub-image geometry

ICC versions

12/quadr. 12 Ebner parameters used for each quadrant of the virtual image, note different weights

Ingr.ZI versions

nono additional SC parameters estimated (no self-calibration, no IMU misalignment, drift, datum)Ebner12 Ebner parameters used for the image, note different weightings

Remarks to the reader

ETH versions

ifp

- no no SC, notice different weighting of a priori observations
- Gruen 44 Gruen parameters for the virtual image
- Ebner V0 12 Ebner parameters estimated for 9 image patches, 15pix buffer between patches
- Gruen V0 44 Gruen parameters estimated for 9 image patches, 15pix buffer between patches

CSIRO version

- Conf.B no SC, only use of the 4 long strips, no values given for a priori weights given
- Conf.C no SC, using all flight lines (4 long strips and 1 cross strip), no values for a priori weights given

IPI versions

- no no SC parameters used
- par1-12 12 standard BLUH parameters
- par1-12, 42-73 12 standard BLUH params plus additional params describing individual UCD sub-CCD patch geometry

Institut für Photogrammetrie

Results from the EuroSDR network on

Digital Camera Calibration

Conclusions and outlook

Conclusions

- self calibration seems to be necessary to improve object space accuracy for all three tested camera types
 - Self-calibration is of larger influence for DMC and UCD compared to ADS
 - systematic corrections for UCD are more significant compared to DMC
- a priori weightings are also of influence (phase 2b), in some cases choice of weighting factors exceeds effect of additional parameter set
- in some cases special parameter sets adopted to sensor geometry seem to be necessary; standard parameters like Ebner or Gruen in some cases are not able to fully compensate the systematic errors
- a priori recommendation of optimal additional parameter set is difficult or even not possible

Outlook

- Project now finalized, final report pending, expected in fall this year
- Two new EuroSDR projects currently in their design phase, follow-ups of Camera Calibration Network
 - Performance of Medium Format Digital Airborne Cameras
 Project leader: Dr. G. Grenzdörffer, Universität Rostock
 - Radiometric Aspects of Digital Airborne Imagery
 Project leader: tbd
- New EuroSDR initiative in European Digital Airborne Camera Certification (EuroDAC²)

⇒ Invitation to actively participate !

- this power point presentation (next week)
- final project report (fall this year)
- some **more details** on calibration network
- New follow-up projects on medium format cameras and radiometry (as soon their design is completed)
- EuroDAC² European initiative on Digital Airborne Camera Calibration

Conclusions and outlook