

Evaluierung digitaler photogrammetrischer Luftbildkamerasysteme

Höhenmodelle und Stereoplotting

DGPF Projekttreffen an der Universität Stuttgart 5.-6. Oktober 2009

Höhenmodelle und Stereoplotting

Sitzung 3

- 8:30 h 10:30 h
- Überblick und Status
 - N. Haala
- Qualität der ALS50 Laserscanner Daten Befliegung Vaihingen/Enz
 - C. Ressl
- Untersuchungen zur DOM Generierung an der ETH
 - K. Wolff
- DOM Generierung mit NGATE f
 ür DMC, UCX und ADS-Daten
 - H. Hastedt

- Sitzung 4 11:00 h – 12:30 h
- Oberflächenmodelle aus Bilddaten im Vergleich mit Laserdaten am Beispiel Vaihingen/Enz
 - M. Gruber
- Erfahrungen zur Ableitung von ATKIS-DGM-Datensätzen und deren Aktualisierung aus digitalen Bildern
 - S. Baltrusch
- Stereoplotting in Bildern digitaler Luftbildkameras: Erste Vergleiche und Ergebnisse
 - A. Schlienkamp

DGPF Test: Erfassung von Höhenmodellen Publikationen

- - Haala, N. & Wolff, K. (2009) Jahrestagung DGPF Jena
- Generierung digitaler Oberflächenmodelle im DGPF-Projekt unter Verwendung von NGATE - Erste Ergebnisse
 - H. Hastedt & C. Ginzler (2009) Jahrestagung DGPF Jena
- DGPF project: Evaluation of digital photogrammetric aerial bases imaging systems - overview and results from the pilot centre
 - Cramer, M. & Haala, N. (2009): ISPRS Workshop High-Resolution Earth Imaging for Geospatial Information, Hannover, Germany, June 2 - 5, 2009.
- DGPF project: Evaluation of digital photogrammetric aerial bases imaging systems - generation of digital surface models
 - Wolff, K. (2009): ISPRS Workshop High-Resolution Earth Imaging for Geospatial Information, Hannover, Germany, June 2 - 5, 2009.
- Comeback of Digital Image Matching
 - Haala, N. (2009) Photogrammetric Week 2009, Wichmann Verlag

Untersuchung des Potentials bildbasiert erzeugter Höhendaten

- DGPF Test Auswertegruppe Höhendaten
 - Bilddaten digitaler Luftbildkameras
 - Mehrfachüberdeckung
 - GSD 8cm, 20cm
 - Referenzdaten Vaihingen/Enz
 - Kontrolpunkte, LiDAR, Landnutzung

DSM from image matching (DGPF test, 2009)

Beispielhafte Bildüberdeckung GSD 20cm/8cm DMC & UCX

DMC GSD 20cm (60/60)

ifp

Jniversität Stuttgart

UCX GSD 20cm (60/60)

DGPF Test: Erfassung von Höhenmodellen Digitale Bildzuordnung vs. Airborne LiDAR

- Vergleichbare Ergebnisse f
 ür beide Verfahren
- Differenzen vor allem im Bereich von Vegetation
 - Wachstum, Ernte da verschiedene Erfassungszeitpunkte
 - Messprinzip, "Durchdringung" von Vegetation

DGPF DSM Stuttgart

Jniversität Stuttgart

ifp

14.10.2009

DGPF Test: Erfassung von Höhenmodellen Digitale Bildzuordnung vs. Airborne LiDAR

DMC 8cm - LiDAR

- Vergleichbare Ergebnisse f
 ür beide Verfahren
- Differenzen vor allem im Bereich von Vegetation
 - Wachstum, Ernte da verschiedene Erfassungszeitpunkte
 - Messprinzip, "Durchdringung" von Vegetation

DGPF DSM Stuttgar

Jniversität Stuttgart

ifp

14.10.2009

DGPF Test: Erfassung von Höhenmodellen Zuordnung digitaler vs. analoger Bilder

Durchgeführte Untersuchungen ifp, Universität Stuttgart

- Auswertung mit MATCH-T DSM
- Absolutgenauigkeit des DOM-Rasters
 - Differenzen zu GPS-Kontrollpunkten
- Relativgenauigkeit der 3D Punktwolken
 - Genauigkeitsanalysen in ebenen Bereichen

14.10.2009

Sportplatz Rosswag

DOM Genauigkeit: Vergleich zu Kontrollpunkten

	Sensor	RMS [cm]	Mean [cm]	Δ Max/N	/lin [cm]	Elim. Points
LiDAR- reference	ALS 50	3.4	-1.1	6.4	-11.0	3
	DMC	3.9	-0.8	21.1	-0.9	2
GSD 8cm	Ultracam-X	4.2	-1.4	11.7	-10.8	0
Raster 0.2m	DigiCAM	5.3	-1.1	15.5	-15.7	1
	RMK	5.2	2.4	15.6	-19.9	2
	DMC	15.7	-9.3	36.9	-30.5	1
GSD 20 cm	DigiCAM	10.1	-0.1	27.1	-30.5	1
Raster 0.5m	Ultracam-X	7.6	0.7	21.3	-17.9	1
	RMK	9.9	1.4	31.8	-25.9	2

- Verbesserte Vergleichbarkeit durch Elimination von Punkten |∆Z| > 3·RMS
 - Mögliche grobe DSM Fehler durch Verdeckungen
- 8cm GSD, 25cm Gitterweite : 4.4cm RMS
 - Ausreichende Genauigkeit der Referenzpunkte ?
- 20cm GSD 50cm Gitterweite : 11.1cm RMS

DGPF DSM Stuttgart

Analyse von 3D Punktwolken aus Mehrbildzuordnung

Distanz

ifp

- -0.380999 -0.222000
- -0.221999 -0.125000
- -0.124999 -0.066000
- -0.065999 -0.027000
- -0.025999 0.007000
 0.007001 0.044000
- 0.007001 0.044000
 0.044001 0.096000
- 0.096001 0.204000
- 0.204001 0.412000
- 0.412001 0.810000

DMC 8cm

Zugeordnete Punkte und grobe Fehlern

Distanz 3D Punkte zur Ebene (Dist >3□) markiert

- Punktanalyse wird durch grobe Fehler der Bildzuordnung beeinflusst
 - Bewegung von Objekten
 - Bewegung von Schlagschatten
- Eliminiere grobe Fehler vor weiterer Analyse
 - Standardabweichung aller Punkte σ_{0 all points}
 - Entferne Punkte mit Dist.>3σ_{0 all points}

DGPF DSM Stuttgart

14.10.2009

Analyse von 3D Punktwolken Rosswag 8cm GSD

ifp

DGPF DSM Stuttgart

- Gute Vergleichbarkeit der Ergebnisse von DMC und RMK durch Doppelkammerflug
 - DMC
 - σ₀ = 5.2 cm
 - Punktdichte = 19.7 Pkte/m²
 - RMK
 - σ₀ = 17.2 cm
 - Punktdichte = 0.8 Pkte/m²
- Erhebliche Verbesserung durch digitale Kamerasysteme

Erzeugte und gefilterte 3D Punktwolken Rosswag 8cm GSD

ifp

Orthophoto mit überlagerter Punktwolke

DGPF DSM Stuttgart

Universität Stuttgart

Beispiele für erfasste Bilder

Vergleich unterschiedlicher Systeme und Auflösungen

DGPF DSM Stuttoa

Universität Stuttgart

Accuracy of 3D point clouds Sports field Rosswag - GSD 8cm

Sensor	STD w/o gross errors [cm]	STD [cm]	Elim.Pts. [%]	Density Pts./m ²
DMC 8cm	5,2	9,7	1,3	19,67
UCX 8cm	6,8	8,0	0,4	19,04
DigiCAM 8cm	10,2	11,2	0,7	20,83
RMK 8cm	17,2	27,3	3,2	0,77
ALS50	1,8	1,9	0,5	8,25

7,4 cm	Mean (only from digital cameras)	19,85 Pts/m ²

Accuracy of 3D point clouds Sports field Rosswag - GSD 20cm

Sensor	STD w/o gross errors [cm]	STD [cm]	Elim.Pts. [%]	Density Pts./m ²
DMC 20cm	17,2	25,4	1,1	2,71
UCX 20cm	22,6	34,2	0,4	1,62
DigiCAM 20cm	34,1	48,2	2,5	2,64
RMK 20cm	60,6	66,2	0,7	0,31
ALS50	1,8	1,9	0,5	8,25

uigital camerasj

Relativgenauigkeit zugeordneter 3D Punktwolken für ausgleichende Ebene

- Sportplatz Rosswag Naturrasen
 - 1.8cm LiDAR
- 7.4cm @ 8cm GSD
 - 19.85 Pts/m²
- 24.6cm @ 20cm GSD
 - 2.32 Pts/m²

- Sportplatz Vaihingen Nord -Kunstrasen
 - 1.5cm LiDAR
- 5.5cm @ 8cm GSD
 - 20.3 Pts/m²
- 14.3cm @ 20cm GSD
 - 1.8 Pts/m²

Bildzuordnung vs. Airborne LiDAR Anwendbarkeit von 3D Punktwolken

DMC 8cm

10.2009

- Genauigkeit und Dichte von 3D
 Punktwolken nähert sich der Qualität von LiDAR an
- Heterogenere Qualität der Bildzuordnung durch Texturabhängigkeit

Anwendbarkeit von 3D Punktwolken Segmentierung durch Region Growing

Lidar

Iniversität Stuttgart

ifp

UCX with 8 cm GSD

DMC with 8 cm GSD

- Regelmäßige Verteilung von LiDAR-Punkten vorteilhaft für Standard-Segmentierung
- Entwicklung geeigneter Auswerteverfahren

DGPF Test: Erfassung von Höhenmodellen Auswertung Universität Stuttgart

- Erhebliche Qualitätssteigerung der bildbasierten 3D Datenerfassung durch Mehrbildzuordnung und Digitale Luftbildkameras
 - DMC, Ultracam-X, DigiCAM, ADS 40
- Relativgenauigkeit zugeordneter 3D Punkte
 - 1.6cm LiDAR
 - 6.5cm @ 8cm GSD
 - 19.5cm @ 20cm GSD
- Gefiltertes DSM-Raster (Signalisierte Punkte)
 - 4.4cm @ 8cm GSD
 - 11.1cm @ 20cm GSD
 - Genauigkeit des DSM-Raster hauptsächlich durch Bildgeometrie definiert

Aufnahmebedingungen: DMC

DMC 8 cm 24.07.2008 9:49 - 10:18

DMC 20 cm 06.08.2008 9:49 - 10:18

Universität Stuttgart

Aufnahmebedingungen: Ultracam

LLUI, Hurst-Puar-Durni, de 2008-09-01 CENT PRIDERUI

Ultracam 8 cm 11.09.2008 12:50 – 13:17 Ultracam 20 cm 11.09.2008 11:52 – 12:14

Universität Stuttgart

Aufnahmebedingungen: DigiCAM

DigiCAM 8 cm 06.08.2008 12:25 – 13:19

DigiCAM 20 cm 06.08.2008 11:31 - 11:54

DGPF DSM Stuttgart

ifp

14.10.2009

Einflussfaktoren auf die Qualität von Höhenmodellen

- Aufnahmebedingungen
 - Bewölkung, Sonnenstand
- Qualität der rekonstruierten Bildgeometrie
 - Nutzung einer einheitlichen Orientierung und Kameraparameter f
 ür die zur H
 öhenmodellgenerierung genutzten Bilder
 - Untersuchungen durch Auswerteteam Geometrie
- Qualität der verwendeten Referenzdaten
 - LiDAR-Daten
- Auswertesoftware
 - MATCH-T DSM
 - SAT-PP
 - NGATE
- Anwendungen, Nutzung 3D Punktwolken vs. DSM Raster ?
 - Stadtgebiete, Erfassung von 3D Gebäudemodellen
 - forstwirtschaftliche Anwendungen, Erfassung offener Gebiete und Gehölzflächen
 - ATKIS

Höhenmodelle und Stereoplotting

Sitzung 3

- 8:30 h 10:30 h
- Überblick und Status
 - N. Haala
- Qualität der ALS50 Laserscanner Daten Befliegung Vaihingen/Enz
 - C. Ressl
- Untersuchungen zur DOM Generierung an der ETH
 - K. Wolff
- DOM Generierung mit NGATE f
 ür DMC, UCX und ADS-Daten
 - H. Hastedt

- Sitzung 4 11:00 h – 12:30 h
- Oberflächenmodelle aus Bilddaten im Vergleich mit Laserdaten am Beispiel Vaihingen/Enz
 - M. Gruber
- Erfahrungen zur Ableitung von ATKIS-DGM-Datensätzen und deren Aktualisierung aus digitalen Bildern
 - S. Baltrusch
- Stereoplotting in Bildern digitaler Luftbildkameras: Erste Vergleiche und Ergebnisse
 - A. Schlienkamp