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Summary:  
The study is intended as a contribution to assessing the value of digital image data for semi-automatic 

analysis for classifying land cover and tree species and was carried out in the framework of the 

DGPF-project. Sensor specific strengths of ADS40-2nd, Quattro DigiCAM, DMC, JAS-150, Ultra-

cam-X, and RMK-Top15 cameras and weakness for classification purposes are presented and shortly 

discussed. The first approach is based on a maximum likelihood method in combination with a deci-

sion tree and produces 13 land cover classes. The second approach is based on logistic regression 

models and produces eight tree species classes.  

The classified images were visually assessed and quantitatively analyzed. The accuracy assessment 

reveals that in both approaches similar classification results are obtained by all sensors with overall 

Kappa coefficients between 0.6 and 0.9. However, a real sensor comparison was not possible since 

the image data was acquired at different dates. Thus, some variations in classification results are due 

to phenological differences and different illumination and atmospheric conditions. It is planned for 

the future that the classifications of the first approach will be adjusted to the characteristics of each 

sensor. In the second approach, further work is needed to improve distinguishing non-dominant, small 

and covered deciduous tree species.  

 

Zusammenfassung: Potenzial digitaler Sensoren zur Klassifizierung der Landbedeckung und Baum-

arten - eine Fallstudie im Rahmen des DGPF-Projektes. Anhand der Bilddaten aus den Kamerasys-

temen ADS40-2nd, Quattro DigiCAM, DMC, JAS-150, Ultracam-X, und RMK-Top15 wurden zwei 

Klassifikationsverfahren (Maximum Likelihood und logistische Regression) getestet. Dabei wurden 

sensor-spezifische Eigenschaften erläutert, sowie die Stärken und Schwächen der einzelnen Systeme 

aufgezeigt. 

Die Resultate wurden visuell und quantitativ bewertet. Direkte Sensorvergleiche erwiesen sich dabei 

als schwierig, da zum Aufnahmezeitpunkt der einzelnen Bilddaten sowohl eine unterschiedliche 

Vegetationsentwicklung wie auch Unterschiede in den Beleuchtungs- und atmosphärischen Verhält-

nissen vorherrschten. Quantitative Analysen zeigen, dass sich mit jedem  Kamerasysteme sehr ähnlich 

gute Resultate erzielen liessen. Das erste Verfahren zeigt für 13 Landnutzungsklassen Kappa Koeffi-

zienten von gut 0.6 bei allen verwendeten Systemen. Allerdings unterscheidet sich die Genauigkeit 

der einzelnen spezifischen Klassen wie Mais oder Kartoffeln für die unterschiedlichen Kameras. 

Hierzu soll in weiteren Analysen das Klassifikationsverfahren an die jeweiligen Kameras angepasst 

werden. Für das zweite Verfahren liegt der Kappa Koeffizient für 8 Baumarten zwischen 0.7 und 0.9. 

Bei diesem Verfahren soll in zukünftigen Analysen die Genauigkeit der Erkennung von nicht domi-

nanten, kleinen und verdeckten Baumarten erhöht werden. 

 

1    Introduction 

This paper compares different aerial cameras for land cover classification purposes.  It was carried out 

in the framework of the project of the German Society for Photogrammetry, Remote Sensing and 

Geoinformation (DGPF). An overwiev and test design of this project is given in this issue (CRAMER 

2010). In the DGPF-project “Evaluation of digital aerial cameras” a special interest group “Thematic 

Analysis” was initiated within the radiometry working group. The objective of this group is the 

comparison of the different aerial cameras in terms of information extraction.  
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While there are many articles related to the radiometric comparison between different aerial cameras 

(MARKELIN et al. 2006, HOONKVAARA et al. 2009), there a only a few articles related to a comparison 

of the classification accuracy between different aerial cameras. E.g. EHLERS et al. (2007) used 

different supervised classification methods to compare DMC, UCD and ADS40 data. ROSSO et al. 

(2008) compare different spectral curves of specific plant species from DMC, UCD and ADS40 data. 

Further articles are related to this project (KLONUS 2009, KLONUS et al. 2009).   

The focus of the Institute for Geoinformatics and Remote Sensing (IGF) at the University of 

Osnabrück in this article is on an entire land cover classification whereas the group Pattern 

Recognition and Photogrammetry at the Swiss Federal Research Institute (WSL) focusses on the 

classification of forest area and different tree species.  

The general objective of an image classification is the automatic allocation of all pixels to land cover 

classes or specific themes. The grey value of each pixel is the numeric base for this allocation (LILLE-

SAND & KIEFER 1994). According to JENSEN (2005) the multispectral classification can be processed 

using one or more of the following approaches: 

- algorithms based on parametric and non-parametric statistics 

- supervised and unsupervised classification algorithms 

- the use of hard or soft classifications (Fuzzy) 

- pixel and object based classification algorithms 

- or hybrid approaches. 

None of these classification methods is superior to another. The most appropriate classification 

strategy depends on different parameters such as the biophysical characteristics of the research area, 

the homogeneity of the remote sensing data and the “a priori” knowledge (JENSEN 2005). Even a 

standard algorithm, such as the maximum likelihood, could produce better results than modern 

algorithms such as ANN (artificial neural networks) (ERBEK et al., 2004) or boosting (BAILLY et al., 

2007). An overview of classification algorithms is given in LU & WENG (2007).  

According to SCOTT et al. (2002), modern regression approaches are particularly useful for modelling 

the spatial distribution of tree species and communities. When analyzing the relationship between 

categorical dependent variables and remotely sensed data logistic regression models are very 

powerful. Thus, regression analyses with explanatory variables derived from high-resolution remote 

sensing data seem very promising for the second part of this article - modelling tree area and tree 

species. Some recent forest research has focused on integrating multisensor data to estimate forest 

area (WANG et al. 2007; WASER et al. 2008A), forest composition and tree species (HEINZEL et al. 

2008). But only few studies have already shown that optical digital airborne data have also been 

opened up new opportunities for tree species classification: The data are recorded by frame-based 

sensors, e.g. DMC (HOLMGREN et al. 2008), Ultracam-X (HIRSCHMUGL et al. 2007) or line-scanning 

sensors, e.g. ADS40 (WASER et al. 2008B), which provide stereo-overlap of up to 90% or entire image 

strips with higher radiometric resolution. 

The main objective of this article was to show the potential of frame-based camera systems (DMC, 

Quattro DigiCAM, Ultracam-X), two line scanning systems (ADS40-2nd, JAS-150) and a classical 

analogue camera (RMK-Top15) for two different classification approaches. Sensor specific strengths 

and weakness for classification purposes will be briefly investigated and emphasis was placed on 

objectivity and not only on accuracy of classification. 

 

2    Material  

2.1. Study area 

The DGPF-project study area is located about 20 km north-west of Stuttgart/Germany in a hilly area 

providing several types of vegetation and land use, mostly rural area with smaller forests and villages, 

quite steep vineyards and some quarries.  

To save processing time, two smaller areas of the DGPF-project study area were chosen as test sites 

for the classification algorithms (Fig. 1). To collect ground truth data for interpretation and 

classification of the recorded scenes different field trips were carried out. Both particular locations 
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were chosen, because they present the highest heterogenity of our study area and include artificial and 

natural areas. In test site 1 nearly all crops were represented, whereas test site 2 is characterized by 

different forest types. 

 

Fig. 1:  DMC RGB Orthoimage of test sites 1 and 2. 

 

Test site 1 

Test site 1 is located between the villages Vaihingen and Rosswag. And is approx. 2 km2 in area. The 

terrain is mostly characterized by agricultural fields in the South and vineyards in the norhern part. 

The area is crossed by a forest, a stone quarrel and the river Enz.  

The first field survey was carried out on 12th and 13th of April 2008 and and arranged by the company 

EFTAS of Münster. Summer and winter crops as well as different objects in the settlements were 

recorded. The entire spectrum of field crops (nearly 85 % of the area) and tree species in selected 

forest areas were recorded between 20th and 22nd of June 2008 by experts from the University of 

Düsseldorf (HHUD). The field survey of the University of Osnabrück was carried out during the first 

flights of the digital aerial cameras between 27th and 31st of July 2008. The data was collected for 

selected areas and updated from the HHUD. During the recording of the Ultracam-X and AIC images 

another field survey from 10th of September to 3rd of October 2008 was carried out by the company 

C+B Technik GmbH. The mapping also included the field crops in autumn. The last field survey was 

carried out by experts of the University of Düsseldorf from 18th to 19th of October 2008. The field 

crops from the first field trip were updated and the current field crops were recorded. Prior to 

digitizing and storing the field information in vector files all field surveys were documented with 

photographs in the directions North, South, East and West for the different field crops. 

 

Test site 2 

Test site 2 is located in the southern part of the village Rosswag and is approx. 1.75 km2 in area. The 

terrain varies (forest slopes and flat areas along the river Enz) with mixed land cover and forest. The 

altitude ranges from 240 m to 410 m a.s.l. The forest area covers approx. 0.7 km2, and is mostly 

characterized by mixed forest (approx. 80%) and riverside woodland (approx. 20%). The dominating 

deciduous tree species are ash (Fraxinus sp.), beech (Fagus sp.), poplar (Populus sp.) and willow 

(Salix sp.) and less frequently maple (Acer sp.) and oak (Quercus sp.). Norway spruce (Picea Abies) 

and Scots pine (Pinus sylvestris) are the main coniferous trees. The ground truth data to validate the 

different outputs was collected in the natural environment to be representative for test site 2. For the 
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validation of the tree cover (forest area), two types of samples were distinguished (tree area / non tree 

area) and a total number of 2 x 60 samples were digitized from the four input orthoimages. To 

determine the eight main tree species, a ground survey visiting 240 trees was carried out on 10th of 

June 2009. Typical examples of each tree species as seen in the ADS40-2nd RGB and CIR images are 

shown in Fig 2. This information was used to calibrate and validate the logistic regression models. 

 

   

1. Maple, 2. Beech, 3. Ash, 4. Poplar, 5. Oak, 6. Willow, 7. Norway spruce, 8. Scots pine 

Fig. 2:  Examples of the 8 sampled tree species in test site 2 as they appear in the ADS40-

2
nd

 imagery (RGB and CIR). 

 

2.2 Optical sensors 

In the framework of the DGPF-project, data was recorded by nine different aerial cameras: DMC, 

ADS40-2nd, JAS-150, Ultracam-X, RMK-Top15, Quattro DigiCAM, AIC-x1, AIC-x4 and DLR 3K-

Kamera. Most of the cameras (DMC, RMK-Top15, ADS40-2nd, Quattro DigiCAM) recorded the data 

on 06th of August 2008, whereas the data from JAS-150, Ultracam-X, AIC-x1, was recorded at the 

beginning of September. The data of the Canon 3K camera from DLR which was recorded on 15th of 

July 2008 was not used in this study due to large seasonal differences. Tab. 1 gives an overview of the 

characteristics of the six camera systems for which the data was available on time and therefore have 

been tested for classification of land cover and tree species. Allthough the image data was recorded 

with a ground sampling distance (GSD) of 8 and 20 cm by all cameras, a GSD of 20 cm was 

considered to have sufficient terrain detail for our study.  

Tab. 1:  Summary of characteristics of the image data used in this study. 

 

Sensor ADS40-2nd DMC RMK-Top15 Quattro  

DigiCAM 

JAS-150 Ultracam-X 

Used in test 

site 

2 1,2 1 1 1,2 1,2 

Acquisition 

date 

06/08/2008 06/08/2008 06/08/2008 06/08/2008 09/09/2008 11/09/2008 

Spectral 

resolution 

(nm) 

RGB+NIR 

B: 428-492 
G: 533-587 

R: 608-662 

NIR: 833-887 

RGB+NIR 

B: 429-514 
G: 514-600 

R: 600-676 

NIR: 695-831 
 

RG+NIR 
B: -- 

G: -- 

R:-- 
NIR:-- 

RGB 

B: 400-540 
G: 480-600 

R: 580-660 

NIR: -- 

RGB+NIR 

B: 440-510 
G: 520-590 

R: 620-680 

NIR: 780-850 

RGB+NIR 

B: 400-580 
G: 500-650 

R: 590-675 

NIR:-- 

Spatial 

resolution  

20 cm 20 cm 20 cm 

(RGB: 8 cm) 

20 cm 20 cm 20 cm 

Radiometric 

resolution 

12 bit 12 bit -- 14 bit 12 bit >12 bit 
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In terms of spectral characteristics DMC and JAS-150 recorded the data in the visible red, green and 

blue and in the near-infrared (NIR) range. Ultracam-X recorded the data in the same wavelengths, but 

provided only the visible bands for the test sites. The Quattro DigiCAM recorded the data only in the 

three visible bands: red, green and blue. For the RMK-Top15 camera the NIR, red and green data was 

available at 20 cm. To use at least three different bands of each sensor DMC, JAS-150, DigiCAM and 

Ultracam were studied together using the RGB bands. RMK-Top15 was also included but using the 

band combination RGN (red, green, near infrared). The objectivity of our comparisons is slightly 

reduced by this compromise. The usage of the NIR band of the RMK-Top15 has the advantage that 

the entropy is substantial higher than it is when only using optical bands, because the RGB bands 

have a higher correlation between each other and therefore a lower entropy. Additionally, the main 

advantage of the NIR information is the better detection of plants (ALBERTZ 2001). Concerning the 

four band classifications only ADS40-2nd, DMC and JAS-150 data could be compared since only for 

these three cameras all four channels were available. 

 

2.3 LiDAR DTM and DSM 

In addition to the image data, a LiDAR flight was realized on 21 August 2008 by a Leica ALS 50 

scanner. with an average point density of 5 points / m2. Four our investigations DSM and a DTM grid 

of 0.25 m raster width was produced from the raw data. A colour coded hillshade of the LiDAR DSM 

is given in Fig. 9. 20 cm orthoimages have been calculated from each data set using the LiDAR DTM. 

 

3    Methods 

3.1. Land cover classification 

To ensure the objectivity of the comparison, the same training areas for all different cameras were 

chosen. The training areas were chosen after the criteria by DENNERT-MÖLLER (1983). They had to be 

 

- connected and large enough 

- all the pixels in an area need to be contiguous 

- homogeneous with an unmixed spectral signature 

- be representative for each class 

- and spectrally well separable. 

 

The classification method consisted of two steps: a pixel-based maximum likelihood classification 

(JENSEN 2005) and a decision tree based classification. The maximum likelihood method was used 

because it showed the best results among other six classification methods for different agricultural 

scenes in a previuos study (KLONUS & EHLERS 2009). Additionally, a higher objectivity is ensured 

since it is relatively simple and only a few parameters need to be defined,. To avoid an inaccurate 

classification, weights to each of the classes were added. These weights were the same in all the 

scenes of all the cameras and were determined using experienced data from other classifications.  

The normalized difference vegetation index (NDVI) was added as an additional input parameter for 

the comparison between DMC and JAS-150 data. The results of the maximum likelihood 

classification (in the form of a layer) together with the grey value information of the input bands (and 

the NDVI – if  available) was used to build the decision tree.  

A decision tree is a hierarchy of rules and consists of different nodes. The first or root node is 

displayed at the top, connected by successive branches to other nodes. These are similarly connected 

until a leaf node is reached, which has no further branches. Each leaf node is similar to a class in Tab. 

3. The classification of a particular pattern (vector in feature space) begins at the root node. Each 

node contains a rule, e.g. NDVI > 500. The different branches from the root node correspond to the 

different possible answers, in this case yes or no. Based descendent on the answer it follows the 

appropriate branch to a subsequent or descendent node. Therefore the branches must be mutually 

distinct and exhaustive. The next step is to make the decision at the sub-tree appropriate subsequent 
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node, which can be considered the root of a sub-tree. This way is continued until a leaf node is 

reached, which has no further rule (DUDA et al. 2001).  

To guarantee a high objectivity of the classification the settings for the decision tree were extracted 

automatically from the training areas using the mean and standard deviations of the pixel values in 

these areas. Overall, fourteen different classes were distinguished for this classification (see Tab. 3). 

The images were visually assessed and quantitatively analysed using 255 randomly chosen points in 

the classified images. Then the points were compared to field data, and producers' and users' accuracy 

and the kappa coefficient were calculated. Classes that had less than five points were not included in 

the analysis (see also Tab. 2). 

 

3.2. Tree species classification 

 

Variables derived from remotely sensed information 

The extraction of tree area and classification of tree species is based on logistic regression models (for 

details see e.g. HOSMER & LEMESHOW 1989). As explanatory variables several geometric and spectral 

signatures were derived from the remote sensing data using standard digital image processing 

methods as described in GONZALES & WOODS (2002).  

A detailed extraction of geometric and spectral explanatory variables derived from airborne remote 

sensing data is described in WASER et al. (2007 and 2008A). The explanatory variables used in this 

study consist of four commonly used geometric parameters derived from the LiDAR DSMs (slope, 

curvature, and two local neighbourhood functions: rate of change in slope for each cell and 

assessment of topographic position). For further details, see BURROUGH (1986). 

Based on experiences made in WASER et al. (2008B) as spectral input variables we produced for each 

data set: four original bands (RGB and NIR) of ADS40-2nd, DMC and JAS-150, Ultracam-X (only 3 

bands RGB were available); the 3 ratios of each RGB band divided by the sum of the corresponding 

three bands; and the three colour transformations from RGB to IHS into the 3 channels intensity (I), 

hue (H), and saturation (S). In total we have derived ten spectral input variables from each of the 

ADS40-2nd, DMC and JAS-150 data sets and 9 from the Ultracam-X where no NIR channel was 

available for this study. 

 

Image segmentation 

Homogenous image segments of individual tree crowns or tree-clusters are needed to extract the tree 

area and to classify tree species (see below). The four orthoimages were therefore subdivided into 

patches by a multi-resolution segmentation using the Definiens 7.0 software (BAATZ & SCHÄPE, 

2000). The RGB bands are used as input data with the LiDAR DSMs providing additional geometric 

information (height and slope). Segmentation was iteratively optimized using several levels of detail 

and an adapted to shape and compactness parameters.  

Finally, the means and standard deviations of the remotely sensed explanatory variables, the variables 

derived from them were calculated for each segment. 

 

Tree cover 

The extraction of the tree area is a required input in classification of the tree species approach. Tree 

canopy and non-tree area masks were generated in five steps. First, a digital canopy height model 

(CHM) was produced subtracting the LiDAR DTM from the DSM. In a second step, pixels with 

CHM values > 2 m were used to extract potential tree areas. Then four shadow masks were 

empirically generated using the spectral information (ratio of channels) from the four input 

orthoimages. In a fourth step, non-tree objects, e.g. buildings, roofs, artefacts in the CHMs were 

removed using NDVI values (ADS40-2nd, DMC, JAS-150) or ratio of red / green bands (Ultracam-

X) information (curvature) about the image segments (e.g. segments on buildings have lower 

curvature values and ranges). These four steps resulted in a canopy cover per data set (four in total) 
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providing discrete tree / non-tree data. 

Then in a fifth step, based on these canopy covers, four fractional tree covers were produced using 

logistic regression and the four topographic variables from the CHM as described in section 3.2.1, 

with a probability for each image segment that it belongs to the class “tree”. The probability (P) for 

each pixel that belongs to the class "tree" ranges between 0 and 1. Segments with a tree probability of 

0.5 or more were assigned to the class “tree”, the others to the class “non-tree”. To validate the 

method, a similar regression was applied to segments with our ground truth data with a tree or non-

tree sample unit by at least 50%. The validation consisted of a 5-fold cross-validation of the logistic 

model. 

 

Tree species classification 

The tree species were classified within the tree covers (for each data set) using logistic regression 

models. Prior to modelling the tree species for the whole area, the variables were selected empirically 

using the image segments of each data set with species assignments. The best model runs were 

obtained using the variables derived from the IHS transformations of the original image bands (means 

and standard deviations) and the NIR bands (if available). As output, probabilities for each tree 

species within an image segment were obtained for each data set. The following eight tree species 

were modeled: ash, beech, maple, Norway spruce, oak,  poplar, Scots pine, and willow. 

 

 
4    Results and discussion 

4.1 Visual analysis 
 

Prior to image classification of test site 1 a visual analysis was performed to detect similar training 

areas. For interpretation purposes the images of the different sensors are displayed in the red band 

(Figs. 3-5). The red band was chosen since only the red and green bands were available for all sen-

sors. At first glance, visual analysis revealed that most of the images of the different cameras have a 

similar quality and the different field crops and land cover classes could be easily extracted. 

However, the missing atmospheric correction is clearly visible in the RMK-Top15 and the JAS-150 

images. The position of the sun during image acquisition was east of the scenes and the effects can be 

clearly seen on the roof of the big farmyard at the bottom.  

Some differences in the appearance of the vegetation are also visible in the field in the north of the 

big farmyard. While the contrast between the different fields in images from DMC and RMK-Top15 

is high, images from Ultracam-X are characterized by a lower contrast. Additionally to the atmos-

pheric differences, differences in contrast might be caused by the different phenological state due to 

the different dates of image acquisition. 
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Fig. 3:  Red band of DMC (left) and RMK-Top15 (right). 
 

   

Fig. 4:  Red band of Quattro DigiCAM (left) and JAS-150 (right).  
 

 

Fig. 5:  Red band of Ultracam-X. 
 

4.2 Thematic classification 

The overall classification accuracies for each sensor are summarized in Tab. 2.  Figs. 6-8 show the 

examples of the  land cover classifications based on the different sensors. With variations of the 

kappa coefficient of only 0.15 (Tab. 2) the quantitative results confirmed what the visual assessments 

suggested (Figs. 3-5), that all cameras performed similarly.  
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Tab. 2:  Fourteen thematic classes (all data except of Cohen's kappa coefficient (K) is given 

in %, for cells with --- less than 5 reference points were available). 

 

Class  RMK-

Top15 

(RGN) 

DMC 

(RGB) 

DMC 

(RGBN) 

JAS-150 

(RGB) 

JAS-150 

(RGBN) 

Quattro 

Digi-

CAM 

(RGB) 

Ultracam-

X (RGB) 

Fallow land 97.05 60.36 79.69 69.23 81.86 74.03 85.08 

Water with 

Algae  

--- --- 60.00 80.00 75.00 62.50 --- 

Grassland 83.32 69.46 74.30 64.65 74.74 77.10 75.72 

Potato --- --- --- --- --- --- --- 

Corn --- 53.70 25.75 --- 60.72 54.17 --- 

Shadow  66.67 80.77 78.25 84.45 80.98 77.27 62.22 

Quarry  65.39 42.43 53.34 12.70 80.81 62.22 57.15 

Stubble field 91.67 53.62 82.02 90.45 85.06 94.15 63.05 

Streets 34.09 71.47 75.56 29.83 41.67 32.15 66.97 

Buildings 49.09 58.93 59.09 59.53 51.76 75.00 75.00 

Forest 69.09 81.38 74.80 78.90 79.76 70.38 69.61 

Water 96.42 67.33 92.04 92.13 94.77 76.51 88.99 

Wine --- 58.34 --- --- --- 62.50 66.67 

Sugar beets 78.57 63.64 62.50 62.92 38.57 71.43 67.50 

K 0.66 0.53 0.63 0.62 0.68 0.68 0.58 

 

The relatively low kappa coefficients are caused by different factors: (a) The application of the same 

method to all different images, (b) different weather conditions during the recording of the images, (c) 

phenological differences between the images and (d) bi-directional reflectance distribution function 

(BRDF)-related problems such as the natural in-field variations or the missing atmospheric 

corrections. Atmospheric corrections were not applied since they are hardly used in praxis. A 

consideration of the BRDF may lead to better results since the final greyvalues in the image strongly 

depend on the position of the sun and the position of the observer relative to the sun (DEMIRCAN ET 

AL. 2009). To reduce these effects, an attempt was made to use only one image per classification. 

Image mosaics were solely used if the single images were smaller than the study area.  

Figs. 6-8 clearly show that most of the grassland are correctly classified. However, in some parts of 

the RMK-Top15 and JAS-150 images this class is mixed with pixels of sugar beets. The 

characteristics of the river Enz are clearly visible in all classified scenes and only the size of the area 

of algae varies. Especially in the JAS-150 images most of the algae are classified as forest. Further 

problems occurred in separating sugar beets from grassland and corn from forest.  

The detection of corn shows a relatively low accuracy. In one corn field no single pixel has been 

classified as corn and distinction between fallow and stubble fields was not always possible using the 

JAS-150, RMK-Top15 and Ultracam-X images. The real distribution of stubble or fallow lands could 

not accurately be determined due to the time differences between the flights and the lack of 

information on the field crops of each day. Generally, the accuracy for these two classes is about 

80%. The misclassified pixels mostly belong to other crops, and only the JAS-150 images show 

misclassified pixels which corresponded to artificial structures such as stones or buildings. 

Another problem occurred when classifying the vineyards. The usage of 20 cm resolution images did 

not absolutely guarantee pure pixels of vineyards for the trainings areas. Therefore the overall 
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accuracy of the classification is reduced by the vineyard class. Nearly 5 % better results are obtained 

when performing a classification without vineyards.  

The analysis of the shadow class has been separated into three types: shadows over water, shadow in 

vegetation and shadows in settlements. The RMK-Top15 detected most of the shadows in vegetation 

as water with high amount of algae; the usage of this sensor also generates problems with shadows 

over water because the majority was not detected. The extraction of shadows in vegetation and water 

was good using the images from DMC and Quattro DigiCAM. In the Ultracam-X images most of the 

shadows in settlements are classified as water. The best results are again obtained for DMC and 

Quattro DigiCAM. Since the quarry stone class is mixed with the street class in all images low 

accuracies are obtained for both with the exception of the DMC classification where an accuracy of 

over 70 % is obtained. In the Quattro DigiCAM images the marks on the streets and the borders of the 

streets are mostly classified as quarry stone.  

In the JAS-150 images especially the larger streets are extracted as buildings whereas the small streets 

are predominantly correctly classified. In the RMK-Top15 images many of the street pixels are 

classified as quarry stone and fallow field. Generally, buildings can be visually separated from the 

remaining classes. Misclassified buildings in the JAS-150 images are mostly due to strong light 

reflections on one site of the roofs which in turn are caused by the low altitude of the sun. The best 

results are obtained using the images from Quattro DigiCAM and Ultracam-X. 

Since only one potatoe field exists in test site 1 only few reference points were allocated to this class. 

The visual inspection shows, that this class has a low accuracy and more than 40 % of the pixels are 

classified as other crop types. High accuracies are obtained for the forest class by all sensors. The 

Quattro DigiCAM scene shows a lot of corn pixels in the final result. Best results for this class are 

obtained when using the DMC and the JAS-150 images. On the other hand, in all images most of the 

corn pixels have been classified as forest. The relatively high accuracy obtained by the RMK-Top15 

images are due the additional usage of the near infrared band.  

 

Tab. 3:  The 14 thematic classes of the land cover classification approach. 

 

Class Color Class Color 

Fallow ground  Stubble field  

Water with algae  Streets  

Grassland  Buildings  

Potato  Forest  

Corn  Water  

Shadow  Vineyard  

Quarry  Sugar beets  
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Fig. 6:  Classification results for Quattro DigiCAM (left) and RMK-Top15 (right). 

          

Fig. 7:  Classification results for DMC (left) and Ultracam-X (right).  

 

Fig. 8:  Classification results for JAS-150. 

 

4.3 Tree species classification 

The modelled tree covers were cross-validated using a patch-to-patch comparison to the ground truth 

data (120 tree and non-tree samples), i.e. segments overlapping at least 50 % with a tree or non-tree 

sample unit. Tab. 4 summarizes the correspondence between the randomly sampled tree / non-tree 

samples and the modelled tree covers for each of the four datasets of this study. The accuracy of the 

classified trees was generally high in all four data sets. The fact that the geometric parameters alone 

almost suffice for the generation of the tree covers underlines the importance of the LiDAR DSM 

quality. An example of the CHM and the tree cover classification is given in Fig. 9. 
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Tab. 4: Correctly classified tree / non-tree segments (%) and Cohen's kappa coefficient (K). 

 

 ADS40-2nd DMC JAS-150 Ultracam-X 

Tree segments 524 521 533 512 

Non-tree segments 454 465 432 448 

Correct (%) 99 99 99 99 

K 0.95 0.96 0.95 0.95 

 

In order to validate the classification of the main tree species, the reference tree data was assigned to 

the corresponding image segments using ArcGis 9.3.1. Each of the 240 delineated reference tree 

species was assigned to an image segment if the overlapping area of the specific species was at least 

10%. If this was the case, for each segment the tree species with the most overlapping area was 

assigned. The classified tree species were then cross-validated (5 times) using a segment-to-segment 

comparison on the delineated reference tree data per sensor. To test the ‘robustness’ of the methods 

and to see whether consistent results could be achieved, the training and testing samples were 

exchanged. Tab. 5 shows the four confusion matrices for tree species classification. An example of 

the classified tree species based on the ADS40-2nd input data are depicted in Fig. 9.  

 

     

    

Fig. 9:  Top left: ADS40-2
nd

 CIR orthoimage of a part of test site 2; top right: colour-coded 

hillshade of LiDAR DSM, classification of tree probabilities (bottom left) and tree species 
(bottom right). 
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Tab. 5:  Confusion matrices for tree species classification using different data sources, 

proportion of correctly classified trees (prop. corr. %) of different tree species, overall 
accuracy (ov. acc. %), and Cohen's kappa coefficient (K). The number of tree segments 
used varies in each model; in the segmented DMC image 456 tree segments were 
assigned, 500 in the ADS40-2

nd
, 452 in the JAS-150, and 462 in the Ultracam-X image. 

 

Field  Classified as  

 Maple Beech Ash Poplar Oak Wil-

low 

Spruce Pine Ov. 

acc. % 

K 

DMC           

Maple 6 0 7 3 0 0 0 0   

Beech 0 89 19 2 0 0 0 0   

Ash 0 15 79 3 0 0 0 0   

Poplar 0 1 3 72 0 0 0 0   

Oak 0 0 0 0 4 0 0 0   

Willow 0 0 0 0 0 69 0 0   

Spruce 0 0 0 0 0 0 58 0   

Pine 0 0 0 0 0 0 0 26   

Prop. 

corr.(%) 

38 71 63 86 100 100 100 100 88.4 0.86 

ADS40-2nd           

Maple 8 5 3 0 0 0 0 0   

Beech 6 109 10 1 0 0 0 0   

Ash 6 22 71 2 1 1 0 0   

Poplar 5 2 2 52 0 4 0 0   

Oak 0 0 2 1 3 0 0 0   

Willow 2 3 1 2 0 67 0 0   

Spruce 0 0 0 0 0 0 74    

Pine 0 0 0 0 0 0  35   

Prop. 

corr. (%) 

23 69 59 73 43 84 100 100 83.8 0.81 

JAS-150           

Maple 3 9 1 0 0 0 0 0   

Beech 1 97 11 1 0 1 2 0   

Ash 0 31 49 4 0 1 1 0   

Poplar 0 3 3 59 0 2 0 0   

Oak 0 0 0 0 5 0 0 0   

Willow 0 0 0 0 0 67 1 0   

Spruce 0 2 0 0 0 0 65 0   

Pine 0 0 0 0 0 0 0 33   

Prop. 

corr.(%) 

21 61 41 82 100 94 93 100 80.3 0.76 

Ultracam-X           

Maple 1 7  4 0 0 3 1 2   

Beech 1 77 18 4 0 0 9 1   

Ash 1 20 73 2 0 4 2 1   

Poplar 0 1 3 66 0 3 0 0   

Oak 0 5 0 0 2 0 0 0   

Willow 0 3 1 9 0 53 1 1   

Spruce 0 5 0 1 0 1 47 1   

Pine 0 2 0 1 0 0 0 25   

Prop 

corr.(%) 

5 53 50 73 29 67 70 74 74.1 0.69 
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Tab. 5 shows that overall classification accuracies are generally high for each input data set and 

variations of the kappa coefficient lay within 17%. The model based on DMC data produced highest 

accuracies for all tree species. At first glance, visual assessments of the classifications suggest that all 

cameras performed quiet similarly and that the agreements in most parts of the site are good. Some 

differences are visible between deciduous and coniferous trees and within deciduous tree species. 

Coniferous tree species are generally better classified than deciduous trees when using the DMC, 

ADS40-2nd and JAS-150 data sets. The lower accuracies of coniferous trees in the Ultracam-X data 

set are obvious and most probably due to the missing NIR channel. The analysis showed that the 

results for deciduous trees are generally less accurate. Oaks as a non-dominant tree species vary from 

29% (Ultracam-X) to 100% (DMC, JAS-150) correctly classified, however this classification is based 

on very few samples. Second best results are obtained for poplar and willow (67% to 100%). Again 

highest accuracies are obtained from DMC and JAS-150 data. The analysis showed that the 

classification of maple was the least accurate. Most errors involved maple being misclassified as 

beech (ADS40-2nd, JAS-150, Ultracam-X) or ash (DMC). Beech is often misclassified as ash (all data 

sets) or as Norway spruce (Ultracam-X). Visual image inspection showed that old and tall beeches 

and ashes are often difficult to distinguish since they have a similar structure (opened crowns with tall 

branches and few leaves) and very often also spectral similarities. Even within species, spectral 

variability can be large because of illumination and view-angle conditions, openness of trees, natural 

variability, shadowing effects and differences in crown health.  

Spectral separability between species and the variability of trees within species have also been 

analysed and described in LECKIE et al. (2005). Maples as non-dominant deciduous tree species in this 

region can be more difficult to identify because they may be short and shaded or obscured by nearby 

large tree species, or by the merging of close crowns. The field visit and visual stereo-image 

interpretation revealed that maples are often not grouped, have smaller crowns and are therefore 

partly covered by each other or by larger trees. Fig. 10 illustrates this situation.  

 

Fig. 10:  Illustration to show the problems involved in identifying deciduous trees. Both 

beech and ash have a similar structure with large partly leaf-less branches, at the 
background a dominant oak is partly covering a smaller maple which is characterized by 
having a smaller crown diameter. 

 

5    Conclusion and recommendations 

The present study shows the potential and the limits of classifying thirteen land cover and eight tree 

species classes using newest digital airborne sensors tested in the the DGPF-project. Small variations 

in classification results are most probably due to phenological differences and different illumination 

and atmospheric conditions. However, an absolute and clinical 1 to 1 comparison between the 

classification results obtained by the different camera systems was not possible due to the following 

reasons: 1) the usage of different bands or band combinations, 2) different dates of image acquisition 
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which causes phenological differences in vegetation growth (especially for cropland), and 3) varying 

atmospheric conditions (illumination and visibility).   

The first approach which uses imagery from the five aerial cameras DMC, RMK-Top15, Quattro 

DigiCAM, JAS-150 and Ultracam-X produces a similar overall Kappa coefficient, but very different 

classification accuracies are obtained for the single classes. The classification accuracy is relatively 

low, but in order to keep the objectivity of the comparison, the first classification approach was not 

adjusted to the characteristics of each camera. This is planned to be done in the near future. Other 

reasons for the low accuracy are the weather conditions and BRDF related problems. 

The most significant achievement of the second approach is the demonstration that combining the 

four data sets of ADS40-2nd, DMC, JAS-150, Ultracam-X with logistic regression models to classify 

tree species has a very high potential to produce meaningful results, especially when supported by the 

NIR bands. Promising classification results for the main tree species were confirmed with ground 

information and what can be seen visually on the imagery. Further work is needed to improve 

distinguishing non-dominant, small and covered tree species. 

To overcome these problems we suggest atmospheric corrections, and radiometric corrections for 

future work as the requests and the realisation of the radiometric analyses as a part of the DGPF-

project is outlined in SCHÖNERMARK (2010). This also implies BRDF-related problems or 

investigation of influences of the BRDF in terms of classification accuracy. During the vegetation 

period only few days (e.g. after precipitation) may change the spectral properties and thus separability 

of some crops significantly. This problem could be solved and the ground truth could be further 

improved by collecting more samples and field visits during the image acquisition. 

Nevertheless, the experiences of the newest digital airborne sensors made in this study may be of 

practical interest or serve as a basis for decisions for tasks of environmental agencies, forest 

inventories or land surveying offices. 
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